Skip to main content
Log in

Intermolecular electronic coupling of 9-methyl-9H-dibenzo[a,[c] carbazole for strong emission in aggregated state by substituent effect

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bright emission of organic luminogens at aggregated state has attracted increasing attention for their potential applications in opto-electronic devices and bio-/chemo-sensors. In this article, upon the introduction of different substituents (Br, Ph and TPh) to the large conjugated core of 9-methyl-9H-dibenzo[a,c]carbazole (DBC) moiety, the resultant luminogens demonstrated PL quantum yields in solid state ranging from 4.81% to 47.39%. Through the systematic investigation of molecular packing, together with theory calculation, the strong intermolecular electronic coupling in the dimers is proved as the main factor to the bright emission in the solid state. The results afforded a new avenue to investigate the intrinsic relationship among the molecular structures, packing modes and emission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsumoto N, Adachi C. J Phys Chem C, 2010, 114: 4652–4658

    CAS  Google Scholar 

  2. An BK, Gierschner J, Park SY. Acc Chem Res, 2012, 45: 544–554

    PubMed  CAS  Google Scholar 

  3. Li Q, Li Z. Acc Chem Res, 2020, 53: 962–973

    PubMed  CAS  Google Scholar 

  4. Fang MM, Yang J, Li Z. Chin J Polym Sci, 2019, 37: 383–393

    CAS  Google Scholar 

  5. Yang J, Li Z. Chin J Org Chem, 2019, 39: 3304–3305

    Google Scholar 

  6. Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Sci China Chem, 2019, 62: 1090–1098

    CAS  Google Scholar 

  7. Skuodis E, Tomkeviciene A, Reghu R, Peciulyte L, Ivaniuk K, Volyniuk D, Bezvikonnyi O, Bagdziunas G, Gudeika D, Grazulevicius JV. Dyes Pigments, 2017, 139: 795–807

    CAS  Google Scholar 

  8. Qin Y, Li G, Qi T, Huang H. Mater Chem Front, 2020, 4: 1554–1568

    CAS  Google Scholar 

  9. Liao Q, Gao Q, Wang J, Gong Y, Peng Q, Tian Y, Fan Y, Guo H, Ding D, Li Q, Li Z. Angew Chem Int Ed, 2020, 59: 9946–9951

    CAS  Google Scholar 

  10. Goushi K, Yoshida K, Sato K, Adachi C. Nat Photon, 2012, 6: 253–258

    CAS  Google Scholar 

  11. Wang T, Hua X, Yu Y, Yuan Y, Fung M, Jiang Z. Chin J Org Chem, 2019, 39: 1436–1443

    Google Scholar 

  12. Park YS, Lee S, Kim KH, Kim SY, Lee JH, Kim JJ. Adv Funct Mater, 2013, 23: 4914–4920

    CAS  Google Scholar 

  13. Yu Y, Yang J, Ren Z, Xie G, Li Q, Li Z. Acta Chim Sin, 2016, 74: 865–870

    CAS  Google Scholar 

  14. Shi Y, Yu Y, Xue L, Wang Y. Chin J Org Chem, 2019, 39: 3414–3437

    Google Scholar 

  15. Zink JI, Hardy GE, Sutton JE. J Phys Chem, 1976, 80: 248–249

    CAS  Google Scholar 

  16. Zink JI. Acc Chem Res, 1978, 11: 289–295

    CAS  Google Scholar 

  17. An C, Xin J, Shi L, Ma W, Zhang J, Yao H, Li S, Hou J. Sci China Chem, 2019, 62: 370–377

    CAS  Google Scholar 

  18. Liu F, Tu Z, Fan Y, Li Q, Li Z. ACS Omega, 2019, 4: 18609–18615

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 18: 1740–1741

    Google Scholar 

  20. Gao H, Zhang N, Li Y, Zhao W, Quan Y, Cheng Y, Chen HY, Xu JJ. Sci China Chem, 2020, 63: 715–721

    CAS  Google Scholar 

  21. Lin F, Feng Y, Liu X, Wang L, Yu ZQ, Liu Y. Mater Chem Front, 2020, 4: 1492–1499

    CAS  Google Scholar 

  22. Li Q, Tang Y, Hu W, Li Z. Small, 2018, 14: 1801560

    Google Scholar 

  23. Huang L, Wen X, Liu J, Chen M, Ma Z, Jia X. Mater Chem Front, 2019, 3: 2151–2156

    CAS  Google Scholar 

  24. Tu J, Liu F, Wang J, Li X, Gong Y, Fan Y, Han M, Li Q, Li Z. ChemPhotoChem, 2019, 3: 133–137

    CAS  Google Scholar 

  25. Zhang Y, Xu H, Xu W, Zhang C, Shi J, Tong B, Cai Z, Dong Y. Sci China Chem, 2019, 62: 1393–1397

    CAS  Google Scholar 

  26. Moore WM, Ketchum M. J Am Chem Soc, 1962, 84: 1368–1371

    CAS  Google Scholar 

  27. Wang C, Li Z. Mater Chem Front, 2017, 1: 2174–2194

    CAS  Google Scholar 

  28. Jang HS, Zhao J, Lei Y, Nieh MP. ACS Appl Mater Interfaces, 2014, 6: 14801–14811

    PubMed  CAS  Google Scholar 

  29. Li Q, Li Z. Adv Sci, 2017, 4: 1600484

    Google Scholar 

  30. Wright AN, Winkler CA. J Phys Chem, 1963, 67: 172–177

    CAS  Google Scholar 

  31. Pham TA, Song F, Nguyen MT, Stöhr M. Chem Commun, 2014, 50: 14089–14092

    CAS  Google Scholar 

  32. Zhang G, Yang G, Wang S, Chen Q, Ma J. Chem Eur J, 2007, 13: 3630–3635

    PubMed  CAS  Google Scholar 

  33. Winnik FM. Chem Rev, 1993, 93: 587–614

    CAS  Google Scholar 

  34. Abd-El-Aziz AS, Abdelghani AA, Wagner BD, Abdelrehim EM. Polym Chem, 2016, 7: 3277–3299

    CAS  Google Scholar 

  35. Pandey MD, Metre RK, Kundu S, Mahanti B, Kumar A, Gopal K, Chandrasekhar V. Cryst Growth Des, 2019, 19: 1888–1895

    CAS  Google Scholar 

  36. Liu H, Yao L, Li B, Chen X, Gao Y, Zhang S, Li W, Lu P, Yang B, Ma Y. Chem Commun, 2016, 52: 7356–7359

    CAS  Google Scholar 

  37. Wang KR, Yang ZB, Li XL. Chem Eur J, 2015, 21: 5680–5684

    PubMed  CAS  Google Scholar 

  38. Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem Soc Rev, 2012, 41: 3878–3896

    PubMed  CAS  Google Scholar 

  39. Li W, Huang Q, Mao Z, Zhao J, Wu H, Chen J, Yang Z, Li Y, Yang Z, Zhang Y, Aldred MP, Chi Z. Angew Chem Int Ed, 2020, 59: 3739–3745

    CAS  Google Scholar 

  40. Yang J, Gao H, Wang Y, Yu Y, Gong Y, Fang M, Ding D, Hu W, Tang BZ, Li Z. Mater Chem Front, 2019, 3: 1391–1397

    CAS  Google Scholar 

  41. Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y. Angew Chem Int Ed, 2014, 53: 2119–2123

    CAS  Google Scholar 

  42. Liu F, Wu F, Ling W, Tu Z, Zhang J, Wei Z, Zhu L, Li Q, Li Z. ACS Energy Lett, 2019, 4: 2514–2521

    CAS  Google Scholar 

  43. Shi G, Chen D, Jiang H, Zhang Y, Zhang Y. Org Lett, 2016, 18: 2958–2961

    PubMed  CAS  Google Scholar 

  44. Aldred MP, Li C, Zhu MQ. Chem Eur J, 2012, 18: 16037–16045

    PubMed  CAS  Google Scholar 

  45. Jakubiak R, Collison CJ, Wan WC, Rothberg LJ, Hsieh BR. J Phys Chem A, 1999, 103: 2394–2398

    CAS  Google Scholar 

  46. Belletête M, Bouchard J, Leclerc M, Durocher G. Macromolecules, 2005, 38: 880–887

    Google Scholar 

  47. Hsu JH, Fann W, Tsao PH, Chuang KR, Chen SA. J Phys Chem A, 1999, 103: 2375–2380

    CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev OA, Austin J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg J, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision D.01. Wallingford: Gaussian, Inc, 2013

    Google Scholar 

  49. Alam P, Leung NLC, Cheng Y, Zhang H, Liu J, Wu W, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Tang BZ. Angew Chem Int Ed, 2019, 58: 4536–1540

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673151, 51973162, 21875174, 21734007) and the Natural Science Foundation of Hubei Province (2017CFA002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianqian Li or Zhen Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic Supplementary Information (ESI)

11426_2020_9814_MOESM1_ESM.doc

Intermolecular Electronic Coupling of 9-Methyl-9H-dibenzo[a,c]carbazole for Strong Emission in Aggregated State by Substituent Effect

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liao, Q., Wang, J. et al. Intermolecular electronic coupling of 9-methyl-9H-dibenzo[a,[c] carbazole for strong emission in aggregated state by substituent effect. Sci. China Chem. 63, 1435–1442 (2020). https://doi.org/10.1007/s11426-020-9814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9814-7

Keywords

Navigation