Skip to main content
Log in

Intrinsically high efficiency sodium metal anode

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Efficient plating/stripping of Na metal is critical to stable operation of any rechargeable Na metal battery. However, it is often overlooked or misunderstood in electrochemical measurements using thick Na electrodes with large excess of Na reserves. Herein, we report two crucial aspects, which have generally been ignored in previous studies, in the development of more practical capacity-controlled Na metal electrodes that can be efficiently cycled at 100% depth. We find that common carbonate electrolytes induce severe side reaction and highly irreversible Na plating/stripping, whereas ether electrolytes without any additive support thick Na metal electrodes operating at a high average Coulombic efficiency of 99.6% for over 300 cycles. We further show that to realize such high efficiency in thin Na metal electrodes, it is necessary to ensure strong adhesion between the thin Na layer and the Cu current collector, which we solve by introducing an Au interlayer. The resulting transferable thin Na metal electrodes enable high-energy-density, high-efficiency and reasonably stable-cycling Na∥Na3V2(PO4)3 batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan H, Hu YS, Chen L. Energy Environ Sci, 2013, 6: 2338–2360

    Article  CAS  Google Scholar 

  2. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Adv Energy Mater, 2012, 2: 710–721

    Article  CAS  Google Scholar 

  3. Hwang JY, Myung ST, Sun YK. Chem Soc Rev, 2017, 46: 3529–3614

    Article  CAS  Google Scholar 

  4. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Acc Chem Res, 2016, 49: 231–240

    Article  CAS  Google Scholar 

  5. Zhao Y, Adair KR, Sun X. Energy Environ Sci, 2018, 11: 2673–2695

    Article  CAS  Google Scholar 

  6. Lee B, Paek E, Mitlin D, Lee SW. Chem Rev, 2019, 119: 5416–5460

    Article  CAS  Google Scholar 

  7. Shi Q, Zhong Y, Wu M, Wang H, Wang H. Angew Chem Int Ed, 2018, 57: 9069–9072

    Article  CAS  Google Scholar 

  8. Seh ZW, Sun J, Sun Y, Cui Y. ACS Cent Sci, 2015, 1: 449–455

    Article  CAS  Google Scholar 

  9. Choudhury S, Wei S, Ozhabes Y, Gunceler D, Zachman MJ, Tu Z, Shin JH, Nath P, Agrawal A, Kourkoutis LF, Arias TA, Archer LA. Nat Commun, 2017, 8: 898

    Article  Google Scholar 

  10. Zhang Y, Zhong Y, Shi Q, Liang S, Wang H. J Phys Chem C, 2018, 122: 21462–21467

    Article  CAS  Google Scholar 

  11. Chen S, Niu C, Lee H, Li Q, Yu L, Xu W, Zhang JG, Dufek EJ, Whittingham MS, Meng S, Xiao J, Liu J. Joule, 2019, 3: 1094–1105

    Article  CAS  Google Scholar 

  12. Zhong Y, Xie Y, Hwang S, Wang Q, Cha JJ, Su D, Wang H. Angew Chem Int Ed, 2020, doi: https://doi.org/10.1002/anie.202004477

  13. Zhang W, Wu Q, Huang J, Fan L, Shen Z, He Y, Feng Q, Zhu G, Lu Y. Adv Mater, 2020, 32: 2001740

    Article  CAS  Google Scholar 

  14. Cohn AP, Muralidharan N, Carter R, Share K, Pint CL. Nano Lett, 2017, 17: 1296–1301

    Article  CAS  Google Scholar 

  15. Tang S, Qiu Z, Wang XY, Gu Y, Zhang XG, Wang WW, Yan JW, Zheng MS, Dong QF, Mao BW. Nano Energy, 2018, 48: 101–106

    Article  CAS  Google Scholar 

  16. Wang C, Wang H, Matios E, Hu X, Li W. Adv FunctMater, 2018, 28: 1802282

    Article  Google Scholar 

  17. Lu K, Gao S, Li G, Kaelin J, Zhang Z, Cheng Y. ACS Mater Lett, 2019, 1: 303–309

    Article  CAS  Google Scholar 

  18. Zhu M, Wang G, Liu X, Guo B, Xu G, Huang Z, Wu M, Liu HK, Dou SX, Wu C. Angew Chem Int Ed, 2020, 59: 6596–6600

    Article  CAS  Google Scholar 

  19. Luo W, Lin CF, Zhao O, Noked M, Zhang Y, Rubloff GW, Hu L. Adv Energy Mater, 2017, 7: 1601526

    Article  Google Scholar 

  20. Li P, Xu T, Ding P, Deng J, Zha C, Wu Y, Wang Y, Li Y. Energy Storage Mater, 2018, 15: 8–13

    Article  Google Scholar 

  21. Zhao Y, Goncharova LV, Zhang Q, Kaghazchi P, Sun Q, Lushington A, Wang B, Li R, Sun X. Nano Lett, 2017, 17: 5653–5659

    Article  CAS  Google Scholar 

  22. Zhu M, Li S, Li B, Gong Y, Du Z, Yang S. Sci Adv, 2019, 5: eaau6264

    Article  CAS  Google Scholar 

  23. Zheng X, Fu H, Hu C, Xu H, Huang Y, Wen J, Sun H, Luo W, Huang Y. J Phys Chem Lett, 2019, 10: 707–714

    Article  CAS  Google Scholar 

  24. Chi SS, Qi XG, Hu YS, Fan LZ. Adv Energy Mater, 2018, 8: 1702764

    Article  Google Scholar 

  25. Zhang Y, Zhong Y, Liang S, Wang B, Chen X, Wang H. ACS Mater Lett, 2019, 1: 254–259

    Article  CAS  Google Scholar 

  26. Rodriguez R, Loeffler KE, Nathan SS, Sheavly JK, Dolocan A, Heller A, Mullins CB. ACS Energy Lett, 2017, 2: 2051–2057

    Article  CAS  Google Scholar 

  27. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Adv Funct Mater, 2017, 27: 1605989

    Article  Google Scholar 

  28. Deng Y, Zheng J, Warren A, Yin J, Choudhury S, Biswal P, Zhang D, Archer LA. Adv Energy Mater, 2019, 9: 1901651

    Article  CAS  Google Scholar 

  29. Fang C, Li J, Zhang M, Zhang Y, Yang F, Lee JZ, Lee MH, Alvarado J, Schroeder MA, Yang Y, Lu B, Williams N, Ceja M, Yang L, Cai M, Gu J, Xu K, Wang X, Meng YS. Nature, 2019, 572: 511–515

    Article  CAS  Google Scholar 

  30. Gu Y, Wang WW, Li YJ, Wu QH, Tang S, Yan JW, Zheng MS, Wu DY, Fan CH, Hu WQ, Chen ZB, Fang Y, Zhang QH, Dong QF, Mao BW. Nat Commun, 2018, 9: 1339

    Article  Google Scholar 

  31. Tang S, Zhang YY, Zhang XG, Li JT, Wang XY, Yan JW, Wu DY, Zheng MS, Dong QF, Mao BW. Adv Mater, 2019, 31: 1807495

    Article  Google Scholar 

  32. Louli AJ, Genovese M, Weber R, Hames SG, Logan ER, Dahn JR. J Electrochem Soc, 2019, 166: A1291–A1299

    Article  CAS  Google Scholar 

  33. Weber R, Genovese M, Louli AJ, Hames S, Martin C, Hill IG, Dahn JR. Nat Energy, 2019, 4: 683–689

    Article  CAS  Google Scholar 

  34. Yin X, Tang W, Jung ID, Phua KC, Adams S, Lee SW, Zheng GW. Nano Energy, 2018, 50: 659–664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Science Foundation (CBET-1903342). Zhang Y acknowledges an exchange graduate student scholarship from the China Scholarship Council. Zhong Y acknowledges the Link Foundation Energy Fellowship. Wang H acknowledges the Sloan Research Fellowship. We thank Bingchen Deng in the Department of Electrical Engineering at Yale University for help with Au deposition on Cu. We also thank Dr. Xinxin Cao at Central South University for providing the Na3V2(PO4)3 material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Wang.

Ethics declarations

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shi, Q., Zhong, Y. et al. Intrinsically high efficiency sodium metal anode. Sci. China Chem. 63, 1557–1562 (2020). https://doi.org/10.1007/s11426-020-9808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9808-6

Keywords

Navigation