Skip to main content
Log in

Combinatorial synthesis of redox-responsive cationic polypeptoids for intracellular protein delivery application

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Biologics play an essential role in treating various indications from cancers to the metabolic diseases, while the current development of new classes of intracellular-acting protein drugs is still hindered because of high molecular mass and overall hydrophilicity of proteins creating extremely poor permeability across cell membrane. Hence, there remains an unmet need to develop safe, potent approaches to augment intracellular protein delivery efficiency. Here, we described a facile multi-component reaction system for generating a small library of redox-responsive cationic polypeptoids with high bio-compatibility. The co-assembly of optimized polymer with protein leads to the formation of compacted nanocomplexes with smaller size and high encapsulation efficiency, thus improving cellular internalization via the macropinocytosis and/or caveolae-mediated endocytosis mainly. After endo-lysosomal escape, the nanocomplexes can be disassociated to efficiently release cargo proteins into the cytosol, owing to the intracellular glutathione (GSH)-triggered rapid cleavage of disulfide bonds in polymers backbone. As a result, we screened a promising platform reagent for efficient cytosolic protein delivery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. Nature, 2016, 538: 183–192

    Article  CAS  Google Scholar 

  2. Mitragotri S, Burke PA, Langer R. Nat Rev Drug Discov, 2014, 13: 655–672

    Article  CAS  Google Scholar 

  3. Pakulska MM, Miersch S, Shoichet MS. Science, 2016, 351: aac4750

    Article  Google Scholar 

  4. Urquhart L. Nat Rev Drug Discov, 2020, 19: 228

    Article  CAS  Google Scholar 

  5. da Cunha JPC, Galante PAF, de Souza JE, de Souza RF, Carvalho PM, Ohara DT, Moura RP, Oba-Shinja SM, Marie SKN, Silva Jr WA, Perez RO, Stransky B, Pieprzyk M, Moore J, Caballero O, Gama-Rodrigues J, Habr-Gama A, Kuo WP, Simpson AJ, Camargo AA, Old LJ, de Souza SJ. Proc Natl Acad Sci USA, 2009, 106: 16752–16757

    Article  CAS  Google Scholar 

  6. Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, Suzuki M, Pattnaik BR, Saha K, Gong S. Nat Nanotechnol, 2019, 14: 974–980

    Article  CAS  Google Scholar 

  7. Lv J, Fan Q, Wang H, Cheng Y. Biomaterials, 2019, 218: 119358

    Article  CAS  Google Scholar 

  8. Fu J, Yu C, Li L, Yao SQ. J Am Chem Soc, 2015, 137: 12153–12160

    Article  CAS  Google Scholar 

  9. Hu S, Chen X, Lei C, Tang R, Kang W, Deng H, Huang Y, Nie Z, Yao S. Chem Commun, 2018, 54: 7806–7809

    Article  CAS  Google Scholar 

  10. Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou ZH, Liu Z, Segura T, Tang Y, Lu Y. Nat Nanotech, 2010, 5: 48–53

    Article  CAS  Google Scholar 

  11. Mukherjee P, Nathamgari SSP, Kessler JA, Espinosa HD. ACS Nano, 2018, 12: 12118–12128

    Article  CAS  Google Scholar 

  12. Gasparini G, Matile S. Chem Commun, 2015, 51: 17160–17162

    Article  CAS  Google Scholar 

  13. Nischan N, Herce HD, Natale F, Bohlke N, Budisa N, Cardoso MC, Hackenberger CPR. Angew Chem Int Ed, 2015, 54: 1950–1953

    Article  CAS  Google Scholar 

  14. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR. Nat Biotechnol, 2015, 33: 73–80

    Article  CAS  Google Scholar 

  15. Wu J, Kamaly N, Shi J, Zhao L, Xiao Z, Hollett G, John R, Ray S, Xu X, Zhang X, Kantoff PW, Farokhzad OC. Angew Chem Int Ed, 2014, 53: 8975–8979

    Article  CAS  Google Scholar 

  16. Tang Q, Wang J, Jiang Y, Zhang M, Chang J, Xu Q, Mao L, Wang M. Chem Commun, 2019, 55: 5163–5166

    Article  CAS  Google Scholar 

  17. Sun L, Le Z, He S, Liu J, Liu L, Leong KW, Mao HQ, Liu Z, Chen Y. Mol Pharm, 2020, 17: 757–768

    Article  CAS  Google Scholar 

  18. Ren L, Lv J, Wang H, Cheng Y. Angew Chem, 2020, 132: 4741–4749

    Article  Google Scholar 

  19. Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. Sci Adv, 2019, 5: eaaw8922

    Article  CAS  Google Scholar 

  20. Chang H, Lv J, Gao X, Wang X, Wang H, Chen H, He X, Li L, Cheng Y. Nano Lett, 2017, 17: 1678–1684

    Article  CAS  Google Scholar 

  21. Lv J, Tan E, Wang Y, Fan Q, Yu J, Cheng Y. J Control Release, 2020, 320: 412–420

    Article  CAS  Google Scholar 

  22. Lv J, Liu C, Lv K, Wang H, Cheng Y. Sci China Mater, 2020, 63: 620–628

    Article  CAS  Google Scholar 

  23. Zhang Z, Shen W, Ling J, Yan Y, Hu J, Cheng Y. Nat Commun, 2018, 9: 1377

    Article  Google Scholar 

  24. Lv J, He B, Yu J, Wang Y, Wang C, Zhang S, Wang H, Hu J, Zhang Q, Cheng Y. Biomaterials, 2018, 182: 167–175

    Article  CAS  Google Scholar 

  25. Li G, Yuan S, Deng D, Ou T, Li Y, Sun R, Lei Q, Wang X, Shen W, Cheng Y, Liu Z, Wu S. Adv Funct Mater, 2019, 29: 1901932

    Article  Google Scholar 

  26. Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, Lim M, Green JJ. Sci Adv, 2019, 5: eaay3255

    Article  CAS  Google Scholar 

  27. Wessjohann LA, Rivera DG, Vercillo OE. Chem Rev, 2009, 109: 796–814

    Article  CAS  Google Scholar 

  28. Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, Shi Y, Sadtler K, Gao W, Lin J, Doloff JC, Langer R, Anderson DG. Nat Biotechnol, 2019, 37: 1174–1185

    Article  CAS  Google Scholar 

  29. Zhang J, Wang YY, Sun H, Li SY, Xiang SH, Tan B. Sci China Chem, 2020, 63: 47–54

    Article  CAS  Google Scholar 

  30. Yang B, Zhao Y, Wei Y, Fu C, Tao L. Polym Chem, 2015, 6: 8233–8239

    Article  CAS  Google Scholar 

  31. Sehlinger A, Dannecker PK, Kreye O, Meier MAR. Macromolecules, 2014, 47: 2774–2783

    Article  CAS  Google Scholar 

  32. Tao Y, Wang S, Zhang X, Wang Z, Tao Y, Wang X. Biomacromolecules, 2018, 19: 936–942

    Article  CAS  Google Scholar 

  33. Zhang X, Wang S, Liu J, Xie Z, Luan S, Xiao C, Tao Y, Wang X. ACS Macro Lett, 2016, 5: 1049–1054

    Article  CAS  Google Scholar 

  34. Kakuchi R. Angew Chem Int Ed, 2014, 53: 46–48

    Article  CAS  Google Scholar 

  35. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. ACS Macro Lett, 2012, 1: 1300–1303

    Article  CAS  Google Scholar 

  36. Tao L, Zhao Y, Yang B, Wei Y, Wu H. Acta Polym Sin, 2016, 11: 1482–1494

    Google Scholar 

  37. Eltoukhy AA, Chen D, Alabi CA, Langer R, Anderson DG. Adv Mater, 2013, 25: 1487–1493

    Article  CAS  Google Scholar 

  38. Gao YJ, Qiao ZY, Wang H. Sci China Chem, 2016, 59: 991–1002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51803243, 51820105004), the Guangdong Basic and Applied Basic Research Foundation (2020A1515011285), and the Guangdong Innovative and Entrepreneurial Research Team Program (2013S086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijia Liu or Yongming Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, Z., Xiao, T., Liu, Z. et al. Combinatorial synthesis of redox-responsive cationic polypeptoids for intracellular protein delivery application. Sci. China Chem. 63, 1619–1625 (2020). https://doi.org/10.1007/s11426-020-9802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9802-0

Keywords

Navigation