Skip to main content
Log in

Recent advances in asymmetric synthesis with CO2

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) is an important and appealing C1 building block in chemical synthesis due to its nontoxicity, abundance, availability and sustainability. Tremendous progress has been achieved in the chemical transformation of CO2 into high value-added organic chemicals. However, the asymmetric synthesis with CO2 to form enantioenriched molecules, especially the catalytic process, has lagged far behind. The enantioselective incorporation of CO2 into organic compounds is highly desirable, as the corresponding chiral products, such as carboxylic acids and amino acids, are common structural units in a vast array of natural products and biologically active compounds. Herein, we discuss recent progress toward the enantioselective incorporation of CO2 into organic molecules, which mainly rely on three strategies: 1) kinetic resolution or desymmetrization of epoxides with CO2 to form chiral cyclic carbonates and polycarbonates; 2) nucleophilic attack of O- or N-nucleophiles to CO2 in tandem with asymmetric C−O bond formation to prepare chiral cyclic carbonates and carbamates; 3) direct enantioselective nucleophilic attack of organometallic reagents to CO2 with asymmetric C−C bond formation. Finally, challenges and future outlook in this area are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song C. Catal Today, 2006, 115: 2–32

    CAS  Google Scholar 

  2. von der Assen N, Voll P, Peters M, Bardow A. Chem Soc Rev, 2014, 43: 7982–7994

    PubMed  CAS  Google Scholar 

  3. Li L, Zhao N, Wei W, Sun Y. Fuel, 2013, 108: 112–130

    CAS  Google Scholar 

  4. Burkart MD, Hazari N, Tway CL, Zeitler EL. ACS Catal, 2019, 9: 7937–7956

    CAS  Google Scholar 

  5. Aresta M, ed. Carbon Dioxide as Chemical Feedstock. Wiley-VCH: Weinheim, 2010

    Google Scholar 

  6. Huang K, Sun CL, Shi ZJ. Chem Soc Rev, 2011, 40: 2435–2452

    PubMed  CAS  Google Scholar 

  7. Martin R, Kleij AW. ChemSusChem, 2011, 4: 1259–1263

    PubMed  CAS  Google Scholar 

  8. Tsuji Y, Fujihara T. Chem Commun, 2012, 48: 9956–9964

    CAS  Google Scholar 

  9. Zhang L, Hou Z. Chem Sci, 2013, 4: 3395–3403

    CAS  Google Scholar 

  10.  He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620–9633

    Google Scholar 

  11. Liu Q, Wu L, Jackstell R, Beller M. Nat Commun, 2015, 6: 5933–5945

    PubMed  Google Scholar 

  12. Yu D, Teong SP, Zhang Y. Coord Chem Rev, 2015, 293–294: 279–291

    Google Scholar 

  13. Zhu Q, Wang L, Xia C, Liu C. Chin J Org Chem, 2016, 36: 2813–2821

    CAS  Google Scholar 

  14. Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew Chem Int Ed, 2018, 57: 15948–15982

    CAS  Google Scholar 

  15. Chen YG, Xu XT, Zhang K, Li YQ, Zhang LP, Fang P, Mei TS. Synthesis, 2018, 50: 35–48

    CAS  Google Scholar 

  16. Yan SS, Fu Q, Liao LL, Sun GQ, Ye JH, Gong L, Bo-Xue YZ, Yu DG. Coord Chem Rev, 2018, 374: 439–463

    CAS  Google Scholar 

  17. Sakakura T, Choi JC, Yasuda H. Chem Rev, 2007, 107: 2365–2387

    PubMed  CAS  Google Scholar 

  18. Sekine K, Yamada T. Chem Soc Rev, 2016, 45: 4524–4532

    PubMed  CAS  Google Scholar 

  19. Yang Y, Lee JW. Chem Sci, 2019, 10: 3905–3926

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Fujihara T, Tsuji Y. Front Chem, 2019, 7: 430–437

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Song J, Liu Q, Liu H, Jiang X. Eur J Org Chem, 2018, 2018: 696–713

    CAS  Google Scholar 

  22. Luan YX, Ye M. Tetrahedron Lett, 2018, 59: 853–861

    CAS  Google Scholar 

  23. Bhanage BM, Arai M, eds. Transformation and Utilization of Carbon Dioxide. Berlin, Heidelberg: Springer-Verlag, 2014

    Google Scholar 

  24. Lu XB, ed. Carbon Dioxide and Organometallics. Heidelberg: Springer, 2016

    Google Scholar 

  25. Zhang L, Li Z, Takimoto M, Hou Z. Chem Rec, 2020, 20: 494–512

    PubMed  Google Scholar 

  26. Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem, 2019, 12: 6–39

    PubMed  CAS  Google Scholar 

  27. Tappe NA, Reich RM, D’Elia V, Kühn FE. Dalton Trans, 2018, 47: 13281–13313

    PubMed  CAS  Google Scholar 

  28. Wu XF, Zheng F. Top Curr Chem (Z), 2017, 375: 4–6

    Google Scholar 

  29. Janes T, Yang Y, Song D. Chem Commun, 2017, 53: 11390–11398

    CAS  Google Scholar 

  30. Zhang L, Hou Z. Curr Opin Green Sustain Chem, 2017, 3: 17–21

    Google Scholar 

  31. Hu J, Liu H, Han B. Sci China Chem, 2018, 61: 1486–1493

    CAS  Google Scholar 

  32. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE. ChemSusChem, 2015, 8: 2436–2454

    PubMed  CAS  Google Scholar 

  33. Cao Y, He X, Wang N, Li HR, He LN. Chin J Chem, 2018, 36: 644–659

    CAS  Google Scholar 

  34. Zhao Y, Liu Z. Chin J Chem, 2018, 36: 455–460

    CAS  Google Scholar 

  35. Tan F, Yin G. Chin J Chem, 2018, 36: 545–554

    CAS  Google Scholar 

  36. Hou J, Li JS, Wu J. Asian J Org Chem, 2018, 7: 1439–1447

    CAS  Google Scholar 

  37. Yeung CS. Angew Chem Int Ed, 2019, 58: 5492–5502

    CAS  Google Scholar 

  38. Gui YY, Zhou WJ, Ye JH, Yu DG. ChemSusChem, 2017, 10: 1337–1340

    PubMed  CAS  Google Scholar 

  39. Zhang Z, Gong L, Zhou XY, Yan SS, Li J, Yu DG. Acta Chim Sin, 2019, 77: 783–793

    Google Scholar 

  40. Senboku H, Katayama A. Curr Opin Green Sustain Chem, 2017, 3: 50–54

    Google Scholar 

  41. Zhang Z, Ye JH, Wu DS, Zhou YQ, Yu DG. Chem Asian J, 2018, 13: 2292–2306

    PubMed  CAS  Google Scholar 

  42. Wang S, Xi C. Chem Soc Rev, 2019, 48: 382–404

    PubMed  CAS  Google Scholar 

  43. Zhang Z, Ju T, Ye JH, Yu DG. Synlett, 2017, 28: 741–750

    CAS  Google Scholar 

  44. Zhang W, Zhang N, Guo C, Lü X. Chin J Org Chem, 2017, 37: 1309–1321

    CAS  Google Scholar 

  45. Pulla S, Felton CM, Ramidi P, Gartia Y, Ali N, Nasini UB, Ghosh A. J CO2Utilization, 2013, 2: 49–57

    CAS  Google Scholar 

  46. Lu XB, Darensbourg DJ. Chem Soc Rev, 2012, 41: 1462–1484

    PubMed  CAS  Google Scholar 

  47. North M, Pasquale R, Young C. Green Chem, 2010, 12: 1514–1539

    CAS  Google Scholar 

  48. Song L, Jiang Y, Zhang Z, Gui Y, Zhou X, Yu DG. Chem Commun, 2020, 12: https://doi.org/10.1039/d0cc00547a

  49. Wu L, Liu Q, Jackstell R, Beller M. Angew Chem Int Ed, 2014, 53: 6310–6320

    CAS  Google Scholar 

  50. Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem, 2015, 17: 157–168

    CAS  Google Scholar 

  51. Li X, He X, Liu X, He LN. Sci China Chem, 2017, 60: 841–852

    CAS  Google Scholar 

  52. Li Y, Cui X, Dong K, Junge K, Beller M. ACS Catal, 2017, 7: 1077–1086

    Google Scholar 

  53. Beydoun K, Klankermayer J. Top Organomet Chem, 2018, 63: 39–76

    Google Scholar 

  54. He X, Cao Y, Lang XD, Wang N, He LN. ChemSusChem, 2018, 11: 3382–3387

    PubMed  CAS  Google Scholar 

  55. Wang L, Sun W, Liu C. Chin J Chem, 2018, 36: 353–362

    Google Scholar 

  56. Cabrero-Antonino JR, Adam R, Beller M. Angew Chem Int Ed, 2019, 58: 12820–12838

    CAS  Google Scholar 

  57. Liu XF, Li XY, Qiao C, He LN. Synlett, 2018, 29: 548–555

    CAS  Google Scholar 

  58. Hulla M, Dyson PJ. Angew Chem Int Ed, 2020, 59: 1002–1017

    CAS  Google Scholar 

  59. Zhang Y, Zhang T, Das S. Green Chem, 2020, 22: 1800–1820

    CAS  Google Scholar 

  60. Kielland N, Whiteoak CJ, Kleij AW. Adv Synth Catal, 2013, 355: 2115–2138

    CAS  Google Scholar 

  61. Vaitla J, Guttormsen Y, Mannisto JK, Nova A, Repo T, Bayer A, Hopmann KH. ACS Catal, 2017, 7: 7231–7244

    CAS  Google Scholar 

  62. Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Chem Rev, 2014, 114: 8129–8152

    PubMed  CAS  Google Scholar 

  63. Jacobsen EN, Pfaltz A, Yamamoto H, eds. Comprehensive Asymmetric Catalysis. New York: Springer, 2000

    Google Scholar 

  64. Carreira EM, Yamamoto H. eds. Comprehensive Chirality. Oxford: Elsevier, 2012

    Google Scholar 

  65. Patai S, ed. The Chemistry of Acid Derivatives. New York: Wiley, 1992

    Google Scholar 

  66. Gooßen L, Rodriguez N, Gooßen K. Angew Chem Int Ed, 2008, 47: 3100–3120

    Google Scholar 

  67. Maag H, ed. Prodrugs of Carboxylic Acids. New York: Springer, 2007

    Google Scholar 

  68. Beller M, ed. Catalytic Carbonylation Reactions. Berlin: Springer, 2006

    Google Scholar 

  69. Borner A, Franke R, eds. Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis. Weinheim: Wiley-VCH, 2016

    Google Scholar 

  70. BKckvall JE, ed. Modern Oxidation Methods. Weinheim: Wiley-VCH, 2004

    Google Scholar 

  71. Haines AH, ed. Methods for the Oxidation of Organic Compounds. New York: Academic Press, 1985

    Google Scholar 

  72. For reviews on the application of organic cyclic carbonates, see: Shaikh AAG, Sivaram S. Chem Rev, 1996, 96: 951–976

    PubMed  CAS  Google Scholar 

  73. Schaffner B, Schaffner F, Verevkin SP, Borner A. Chem Rev, 2010, 110: 4554–4581

    PubMed  CAS  Google Scholar 

  74. Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang R. J Am Chem Soc, 2004, 126: 3732–3733

    PubMed  CAS  Google Scholar 

  75. Ren WM, Wu GP, Lin F, Jiang JY, Liu C, Luo Y, Lu XB. Chem Sci, 2012, 3: 2094–2102

    CAS  Google Scholar 

  76. Paddock RL, Nguyen SBT. Chem Commun, 2004, 1: 1622–1623

    Google Scholar 

  77. Tanaka H, Kitaichi Y, Sato M, Ikeno T, Yamada T. Chem Lett, 2004, 33: 676–677

    CAS  Google Scholar 

  78. Berkessel A, Brandenburg M. Org Lett, 2006, 8: 4401–4404

    PubMed  CAS  Google Scholar 

  79. Chen SW, Kawthekar RB, Kim GJ. Tetrahedron Lett, 2007, 48: 297–300

    CAS  Google Scholar 

  80. Kawthekar RB, Bi W.T, Kim GJ. Bull Korean Chem Soc, 2008, 29: 313–318

    CAS  Google Scholar 

  81. Chang T, Jing H, Jin L, Qiu W. J Mol Catal A-Chem, 2007, 264: 241–247

    CAS  Google Scholar 

  82. Jin L, Huang Y, Jing H, Chang T, Yan P. Tetrahedron-Asymmetry, 2008, 19: 1947–1953

    CAS  Google Scholar 

  83. Chang T, Jin L, Jing H. ChemCatChem, 2009, 1: 379–383

    CAS  Google Scholar 

  84. Zhang S, Song Y, Jing H, Yan P, Cai Q. Chin J Catal, 2009, 30: 1255–1260

    CAS  Google Scholar 

  85. Yan P, Jing H. Adv Synth Catal, 2009, 351: 1325–1332

    CAS  Google Scholar 

  86. Roy T, Kureshy RI, Khan NH, Abdi SHR, Bajaj HC. Catal Sci Technol, 2013, 3: 2661–2667

    CAS  Google Scholar 

  87. Ren Y, Cheng X, Yang S, Qi C, Jiang H, Mao Q. Dalton Trans, 2013, 42: 9930–9937

    PubMed  CAS  Google Scholar 

  88. North M, Quek SCZ, Pridmore NE, Whitwood AC, Wu X. ACS Catal, 2015, 5: 3398–3402

    CAS  Google Scholar 

  89. Qin J, Larionov VA, Harms K, Meggers E. ChemSusChem, 2019, 12: 320–325

    PubMed  CAS  Google Scholar 

  90. Ema T, Yokoyama M, Watanabe S, Sasaki S, Ota H, Takaishi K. Org Lett, 2017, 19: 4070–4073

    PubMed  CAS  Google Scholar 

  91. Lu XB, Ren WM, Wu GP. Acc Chem Res, 2012, 45: 1721–1735

    PubMed  CAS  Google Scholar 

  92. Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW. Chem Rev, 2014, 114: 8129–8152

    PubMed  CAS  Google Scholar 

  93. Lu XB. Top Organomet Chem, 2015, 53: 171–198

    Google Scholar 

  94. Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Kheirollahi Nezhad PD. RSC Adv, 2019, 9: 3884–3899

    CAS  Google Scholar 

  95. Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Chem Soc Rev, 2019, 48: 4466–4514

    PubMed  CAS  Google Scholar 

  96. Allen SD, Moore DR, Lobkovsky EB, Coates GW. J Am Chem Soc, 2002, 124: 14284–14285

    PubMed  CAS  Google Scholar 

  97. Qin Z, Thomas CM, Lee S, Coates GW. Angew Chem Int Ed, 2003, 42: 5484–5487

    CAS  Google Scholar 

  98. Lu XB, Wang Y. Angew Chem Int Ed, 2004, 43: 3574–3577

    CAS  Google Scholar 

  99. Ren WM, Liu Y, Wu GP, Liu J, Lu XB. J Polym Sci A Polym Chem, 2011, 49: 4894–4901

    CAS  Google Scholar 

  100. Ren WM, Zhang WZ, Lu XB. Sci China Chem, 2010, 53: 1646–1652

    CAS  Google Scholar 

  101. Nakano K, Hashimoto S, Nakamura M, Kamada T, Nozaki K. Angew Chem Int Ed, 2011, 50: 4868–4871

    CAS  Google Scholar 

  102. Wu GP, Xu PX, Lu XB, Zu YP, Wei SH, Ren WM, Darensbourg DJ. Macromolecules, 2013, 46: 2128–2133

    CAS  Google Scholar 

  103. Inoue S, Koinuma H, Tsuruta T. J Polym Sci B Polym Lett, 1969, 7: 287–292

    CAS  Google Scholar 

  104. Inoue S, Koinuma H, Tsuruta T. Makromol Chem, 1969, 130: 210–220

    CAS  Google Scholar 

  105. Wilks ES, ed. Industrial Polymers Handbook. Weinheim: Wiley-VCH, 2001. 291–304

    Google Scholar 

  106. Luinstra G. Polym Revs, 2008, 48: 192–219

    CAS  Google Scholar 

  107. Gomez FJ, Waymouth RM. Science, 2002, 295: 635–636

    PubMed  CAS  Google Scholar 

  108. Nakano K, Kosaka N, Hiyama T, Nozaki K. Dalton Trans, 2003, 1: 4039–4050

    Google Scholar 

  109. Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Nat Rev Chem, 2019, 3: 514–535

    CAS  Google Scholar 

  110. Nozaki K, Nakano K, Hiyama T. J Am Chem Soc, 1999, 121: 11008–11009

    CAS  Google Scholar 

  111. Nakano K, Nozaki K, Hiyama T. J Am Chem Soc, 2003, 125: 5501–5510

    PubMed  CAS  Google Scholar 

  112. Cheng M, Darling NA, Lobkovsky EB, Coates GW. Chem Commun, 2000, 1: 2007–2008

    Google Scholar 

  113. Ellis WC, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky EB, Coates GW. Chem Sci, 2014, 5: 4004–4011

    CAS  Google Scholar 

  114. Xiao Y, Wang Z, Ding K. Chem Eur J, 2005, 11: 3668–3678

    PubMed  CAS  Google Scholar 

  115. Xiao Y, Wang Z, Ding K. Macromolecules, 2006, 39: 128–137

    CAS  Google Scholar 

  116. Hua YZ, Yang XC, Liu MM, Song X, Wang MC, Chang JB. Macromolecules, 2015, 48: 1651–1657

    CAS  Google Scholar 

  117. Abbina S, Du G. Organometallics, 2012, 31: 7394–7403

    CAS  Google Scholar 

  118. Wu GP, Ren WM, Luo Y, Li B, Zhang WZ, Lu XB. JAm Chem Soc, 2012, 134: 5682–5688

    CAS  Google Scholar 

  119. Liu Y, Ren WM, Liu J, Lu XB. Angew Chem Int Ed, 2013, 52: 11594–11598

    CAS  Google Scholar 

  120. Liu Y, Ren WM, He KK, Zhang WZ, Li WB, Wang M, Lu XB. J Org Chem, 2016, 81: 8959–8966

    PubMed  CAS  Google Scholar 

  121. Jacobsen EN, Tokunaga M, Larrow JF. Stereoselective ring opening reactions. World Patent, WO/2000/09463, 2000-03-14

  122. Li B, Zhang R, Lu XB. Macromolecules, 2007, 40: 2303–2307

    CAS  Google Scholar 

  123. Nakano K, Nakamura M, Nozaki K. Macromolecules, 2009, 42: 6972–6980

    CAS  Google Scholar 

  124. Nishioka K, Goto H, Sugimoto H. Macromolecules, 2012, 45: 8172–8192

    CAS  Google Scholar 

  125. Yoshida M, Fujita M, Ishii T, Ihara M. J Am Chem Soc, 2003, 125: 4874–4881

    PubMed  CAS  Google Scholar 

  126. Yoshida S, Fukui K, Kikuchi S, Yamada T. J Am Chem Soc, 2010, 132: 4072–4073

    PubMed  CAS  Google Scholar 

  127. Vara BA, Struble TJ, Wang W, Dobish MC, Johnston JN. J Am Chem Soc, 2015, 137: 7302–7305

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Yousefi R, Struble TJ, Payne JL, Vishe M, Schley ND, Johnston JN. J Am Chem Soc, 2019, 141: 618–625

    PubMed  CAS  Google Scholar 

  129. Barbachyn MR, Ford CW. Angew Chem Int Ed, 2003, 42: 2010–2023

    CAS  Google Scholar 

  130. Mukhtar TA, Wright GD. Chem Rev, 2005, 105: 529–542

    PubMed  CAS  Google Scholar 

  131. Gao XT, Gan CC, Liu SY, Zhou F, Wu HH, Zhou J. ACS Catal, 2017, 7: 8588–8593

    CAS  Google Scholar 

  132. Zhang M, Zhao X, Zheng S. Chem Commun, 2014, 50: 4455–4458

    CAS  Google Scholar 

  133. Zheng SC, Zhang M, Zhao XM. Chem Eur J, 2014, 20: 7216–7221

    PubMed  CAS  Google Scholar 

  134. Xie S, Gao X, Zhou F, Wu H, Zhou J. Chin Chem Lett, 2020, 31: 324–328

    CAS  Google Scholar 

  135. Kerrick ST, Beak P. J Am Chem Soc, 1991, 113: 9708–9710

    CAS  Google Scholar 

  136. Park YS, Beak P. J Org Chem, 1997, 62: 1574–1575

    CAS  Google Scholar 

  137. Schlosser M, Limat D. J Am Chem Soc, 1995, 117: 12342–12343

    CAS  Google Scholar 

  138. Chong JM, Park SB. J Org Chem, 1992, 57: 2220–2222

    CAS  Google Scholar 

  139. Jeanjean F, Fournet G, Bars DL, Goré J. Eur J Org Chem, 2000, 2000: 1297–1305

    Google Scholar 

  140. Mita T, Sugawara M, Hasegawa H, Sato Y. J Org Chem, 2012, 77: 2159–2168

    PubMed  CAS  Google Scholar 

  141. Mita T, Sugawara M, Saito K, Sato Y. Org Lett, 2014, 16: 3028–3031

    PubMed  CAS  Google Scholar 

  142. Perron Q, Alexakis A. Adv Synth Catal, 2010, 352: 2611–2620

    CAS  Google Scholar 

  143. For selected reviews: see refs. 4l, 4r, 4z; For selected examples: Williams CM, Johnson JB, Rovis T. J Am Chem Soc, 2008, 130: 14936–14937

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Takaya J, Iwasawa N. J Am Chem Soc, 2008, 130: 15254–15255

    PubMed  CAS  Google Scholar 

  145. Zhang L, Cheng J, Carry B, Hou Z. J Am Chem Soc, 2012, 134: 14314–14317

    PubMed  CAS  Google Scholar 

  146. Wang X, Nakajima M, Martin R. J Am Chem Soc, 2015, 137: 8924–8927

    PubMed  CAS  Google Scholar 

  147. Butcher TW, McClain EJ, Hamilton TG, Perrone TM, Kroner KM, Donohoe GC, Akhmedov NG, Petersen JL, Popp BV. Org Lett, 2016, 18: 6428–6431

    PubMed  CAS  Google Scholar 

  148. Tortajada A, Ninokata R, Martin R. J Am Chem Soc, 2018, 140: 2050–2053

    PubMed  CAS  Google Scholar 

  149. Takimoto M, Mori M. J Am Chem Soc, 2002, 124: 10008–10009

    PubMed  CAS  Google Scholar 

  150. Takimoto M, Nakamura Y, Kimura K, Mori M. J Am Chem Soc, 2004, 126: 5956–5957

    PubMed  CAS  Google Scholar 

  151. Ishii M, Mori F, Tanaka K. Chem Eur J, 2014, 20: 2169–2174

    PubMed  CAS  Google Scholar 

  152. Kawashima S, Aikawa K, Mikami K. Eur J Org Chem, 2016, 2016: 3166–3170

    CAS  Google Scholar 

  153. Dian L, Müller DS, Marek I. Angew Chem Int Ed, 2017, 56: 6783–6787

    CAS  Google Scholar 

  154. Pirnot MT, Wang YM, Buchwald SL. Angew Chem Int Ed, 2016, 55: 48–57

    CAS  Google Scholar 

  155. Gui YY, Hu N, Chen XW, Liao L, Ju T, Ye JH, Zhang Z, Li J, Yu DG. J Am Chem Soc, 2017, 139: 17011–17014

    PubMed  CAS  Google Scholar 

  156. Qiu J, Gao S, Li C, Zhang L, Wang Z, Wang X, Ding K. Chem Eur J, 2019, 25: 13874–13878

    PubMed  CAS  Google Scholar 

  157. Chen XW, Zhu L, Gui YY, Jing K, Jiang YX, Bo ZY, Lan Y, Li J, Yu DG. J Am Chem Soc, 2019, 141: 18825–18835

    PubMed  CAS  Google Scholar 

  158. Cheng L, Xie J. Chin J Org Chem, 2020, 40: 247–248

    Google Scholar 

  159. For selected reviews, see: Jutand A. Chem Rev, 2008, 108: 2300–2347

    PubMed  CAS  Google Scholar 

  160. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    PubMed  PubMed Central  CAS  Google Scholar 

  161. Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal, 2018, 8: 7086–7103

    CAS  Google Scholar 

  162. Tang S, Liu Y, Lei A. Chem, 2018, 4: 27–45

    CAS  Google Scholar 

  163. Sauer GS, Lin S. ACS Catal, 2018, 8: 5175–5187

    CAS  Google Scholar 

  164. Yang QL, Fang P, Mei TS. Chin J Chem, 2018, 36: 338–352

    CAS  Google Scholar 

  165. Xiong P, Xu HC. Acc Chem Res, 2019, 52: 3339–3350

    PubMed  CAS  Google Scholar 

  166. Chang X, Zhang Q, Guo C. Angew Chem Int Ed, 2020, https://doi.org/10.1002/anie.202000016

  167. Matthessen R, Fransaer J, Binnemans K, De Vos DE. Beilstein J Org Chem, 2014, 10: 2484–2500

    PubMed  PubMed Central  Google Scholar 

  168. Feroci M, Orsini M, Palombi L, Sotgiu G, Colapietro M, Inesi A. J Org Chem, 2004, 69: 487–494

    PubMed  CAS  Google Scholar 

  169. Feroci M, Inesi A, Orsini M, Palombi L. Org Lett, 2002, 4: 2617–2620

    PubMed  CAS  Google Scholar 

  170. Orsini M, Feroci M, Sotgiu G, Inesi A. Org Biomol Chem, 2005, 3: 1202–1208

    PubMed  CAS  Google Scholar 

  171. Zhang K, Wang H, Zhao SF, Niu DF, Lu JX. J Electroanal Chem, 2009, 630: 35–41

    CAS  Google Scholar 

  172. Zhao SF, Zhu MX, Zhang K, Wang H, Lu JX. Tetrahedron Lett, 2011, 52: 2702–2705

    CAS  Google Scholar 

  173. Chen BL, Tu ZY, Zhu HW, Sun WW, Wang H, Lu JX. Electrochim Acta, 2014, 116: 475–483

    CAS  Google Scholar 

  174. Chen BL, Zhu HW, Xiao Y, Sun QL, Wang H, Lu JX. Electrochem Commun, 2014, 42: 55–59

    Google Scholar 

  175. Jiao KJ, Li ZM, Xu XT, Zhang LP, Li YQ, Zhang K, Mei TS. Org Chem Front, 2018, 5: 2244–2248

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21801176, 91956111), the Sichuan Science and Technology Program (2019YJ0379, 20CXTD0112) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Yuan Gui or Da-Gang Yu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, CK., Chen, XW., Gui, YY. et al. Recent advances in asymmetric synthesis with CO2. Sci. China Chem. 63, 1336–1351 (2020). https://doi.org/10.1007/s11426-020-9788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9788-2

Keywords

Navigation