Skip to main content

Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability

Abstract

Precise and continuous monitoring of biochemicals by biosensors assists to understand physiological functions for various diagnostics and therapeutic applications. For implanted biosensors, small size and flexibility are essential for minimizing tissue damage and achieving accurate detection. However, the active surface area of sensor decreases as the sensor becomes smaller, which will increase the impedance and decrease the signal to noise ratio, resulting in a poor detection limit. Taking advantages of local amplification effect, organic electrochemical transistors (OECTs) constitute promising candidates for high-sensitive monitoring. However, their detections in deep tissues are rarely reported. Herein, we report a family of implantable, fiber-shaped all-in-one OECTs based on carbon nanotube fibers for versatile biochemical detection including H2O2, glucose, dopamine and glutamate. These fiber-shaped OECTs demonstrated high sensitivity, dynamical stability in physiological environment and anti-interference capability. After implantation in mouse brain, 7-day dopamine monitoring in vivo was realized for the first time. These fiber-shaped OECTs could be great additions to the “life science” tool box and represent promising avenue for biomedical monitoring.

This is a preview of subscription content, access via your institution.

References

  1. Shanaiah N, Aruni Desilva M, Nagana Gowda GA, Raftery MA, Hainline BE, Raftery D. Proc Natl Acad Sci USA, 2007, 104: 11540–11544

    CAS  PubMed  Google Scholar 

  2. Labib M, Sargent EH, Kelley SO. Chem Rev, 2016, 116: 9001–9090

    CAS  PubMed  Google Scholar 

  3. Wang J. Chem Rev, 2008, 108: 814–825

    CAS  PubMed  Google Scholar 

  4. Perry M, Li Q, Kennedy RT. Anal Chim Acta, 2009, 653: 1–22

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Chem Rev, 2019, 119: 11761–11817

    CAS  PubMed  Google Scholar 

  6. Parlak O, İncel Aı, Uzun L, Turner APF, Tiwari A. Biosens Bioelectron, 2017, 89: 545–550

    CAS  PubMed  Google Scholar 

  7. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P. ACS Nano, 2012, 6: 3206–3213

    CAS  PubMed  Google Scholar 

  8. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH, Brooks GA, Davis RW, Javey A. Nature, 2016, 529: 509–514

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X. Sci Adv, 2017, 3: e1701629

    PubMed  PubMed Central  Google Scholar 

  10. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim DH. Nat Nanotech, 2016, 11: 566–572

    Google Scholar 

  11. Wen X, Wang B, Huang S, Liu T, Lee MS, Chung PS, Chow YT, Huang IW, Monbouquette HG, Maidment NT, Chiou PY. Biosens Bioelectron, 2019, 131: 37–45

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang H, Li T, Jiang M, Wei C, Ma S, Chen D, Tong W, Huang X. Biosens Bioelectron, 2020, 152

  13. Wu X, Peng H. Sci Bull, 2019, 64: 634–640

    CAS  Google Scholar 

  14. Ohayon D, Nikiforidis G, Savva A, Giugni A, Wustoni S, Palanisamy T, Chen X, Maria IP, Di Fabrizio E, Costa PMFJ, McCulloch I, Inal S. Nat Mater, 2020, 19: 456–463

    CAS  PubMed  Google Scholar 

  15. Weber SG, Long JT. Anal Chem, 1988, 60: 903A–913A

    CAS  PubMed  Google Scholar 

  16. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. RSC Adv, 2019, 9: 8778–8881

    CAS  Google Scholar 

  17. Rong G, Corrie SR, Clark HA. ACS Sens, 2017, 2: 327–338

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Strakosas X, Bongo M, Owens RM. J Appl Polym Sci, 2015, 132: 1–14

    Google Scholar 

  19. White HS, Kittlesen GP, Wrighton MS. J Am Chem Soc, 1984, 106: 5375–5377

    CAS  Google Scholar 

  20. Shiri P, Dacanay EJS, Hagen B, Kaake LG. J Mater Chem C, 2019, 7: 12935–12941

    CAS  Google Scholar 

  21. Mak CH, Liao C, Fu Y, Zhang M, Tang CY, Tsang YH, Chan HLW, Yan F. J Mater Chem C, 2015, 3: 6532–6538

    CAS  Google Scholar 

  22. Tang H, Yan F, Lin P, Xu J, Chan HLW. Adv Funct Mater, 2011, 21: 2264–2272

    Google Scholar 

  23. Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Hervé T, Sanaur S, Bernard C, Malliaras GG. Nat Commun, 2013, 4: 1575

    PubMed  PubMed Central  Google Scholar 

  24. Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Sci Rep, 2016, 6: 33637

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang A, Li Y, Yang C, Fu Y, Wang N, Li L, Yan F. Adv Mater, 2018, 30: 1800051

    Google Scholar 

  26. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Adv Mater, 2020, 32: 1901971

    CAS  Google Scholar 

  27. Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Nat Rev Mater, 2018, 3: 17086

    CAS  Google Scholar 

  28. Liao C, Mak C, Zhang M, Chan HLW, Yan F. Adv Mater, 2015, 27: 676–681

    CAS  PubMed  Google Scholar 

  29. Fu X, Xu L, Li J, Sun X, Peng H. Carbon, 2018, 139: 1063–1073

    CAS  Google Scholar 

  30. Ye L, Liao M, Sun H, Yang Y, Tang C, Zhao Y, Wang L, Xu Y, Zhang L, Wang B, Xu F, Sun X, Zhang Y, Dai H, Bruce PG, Peng H. Angew Chem Int Ed, 2019, 58: 2437–2442

    CAS  Google Scholar 

  31. Hong Y, Cheng XL, Liu GJ, Hong DS, He SS, Wang BJ, Sun XM, Peng HS. Chin J Polym Sci, 2019, 37: 737–743

    CAS  Google Scholar 

  32. Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H. Sci China Mater, 2019, 62: 955–964

    CAS  Google Scholar 

  33. Chen Q, Liang C, Sun X, Chen J, Yang Z, Zhao H, Feng L, Liu Z. Proc Natl Acad Sci USA, 2017, 114: 5343–5348

    CAS  PubMed  Google Scholar 

  34. Park S, Loke G, Fink Y, Anikeeva P. Chem Soc Rev, 2019, 48: 1826–1852

    CAS  PubMed  Google Scholar 

  35. Canales A, Park S, Kilias A, Anikeeva P. Acc Chem Res, 2018, 51: 829–838

    CAS  PubMed  Google Scholar 

  36. Yang X, Zhou T, Zwang TJ, Hong G, Zhao Y, Viveros RD, Fu TM, Gao T, Lieber CM. Nat Mater, 2019, 18: 510–517

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P. Nat Biotechnol, 2015, 33: 277–284

    CAS  PubMed  Google Scholar 

  38. Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Nat Biomed Eng, 2020, 4: 159–171

    CAS  PubMed  Google Scholar 

  39. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Eur J Pharmacol, 2013, 698: 6–18

    CAS  PubMed  Google Scholar 

  40. Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PEM. Nat Methods, 2010, 7: 126–129

    CAS  PubMed  Google Scholar 

  41. Thamilselvan A, Manivel P, Rajagopal V, Nesakumar N, Suryanarayanan V. Colloids Surfs B-Biointerfaces, 2019, 180: 1–8

    CAS  Google Scholar 

  42. Schwerdt HN, Shimazu H, Amemori K, Amemori S, Tierney PL, Gibson DJ, Hong S, Yoshida T, Langer R, Cima MJ, Graybiel AM. Proc Natl Acad Sci USA, 2017, 114: 13260–13265

    CAS  PubMed  Google Scholar 

  43. Liao C, Zhang M, Niu L, Zheng Z, Yan F. J Mater Chem B, 2014, 2: 191–200

    CAS  PubMed  Google Scholar 

  44. Tolosa VM, Wassum KM, Maidment NT, Monbouquette HG. Biosens Bioelectron, 2013, 42: 256–260

    CAS  PubMed  Google Scholar 

  45. Kergoat L, Piro B, Simon DT, Pham MC, Noël V, Berggren M. Adv Mater, 2014, 26: 5658–5664

    CAS  PubMed  Google Scholar 

  46. Buck K, Voehringer P, Ferger B. J Neurosci Methods, 2009, 182: 78–84

    CAS  PubMed  Google Scholar 

  47. Hao Y, Yang JY, Guo M, Wu CF, Wu MF. Brain Res, 2005, 1040: 191–196

    CAS  PubMed  Google Scholar 

  48. Janyasupab M, Liu CW, Chanlek N, Chio-Srichan S, Promptmas C, Surareungchai W. Sens Actuat B-Chem, 2019, 286: 550–563

    CAS  Google Scholar 

  49. Sabu C, Henna TK, Raphey VR, Nivitha KP, Pramod K. Biosens Bioelectron, 2019, 141: 111201

    CAS  PubMed  Google Scholar 

  50. Thomas PM, Phillips JP, Delanty N, O’Connor WT. Epilepsy Res, 2003, 54: 73–79

    CAS  PubMed  Google Scholar 

  51. Peričić D, Lazić J, Jazvinšćak Jembrek M, Švob Štrac D. Eur J Pharmacol, 2005, 527: 105–110

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21634003, 51673043), Ministry of Science and Technology of China (2016YFA0203302), Science and Technology Commission of Shanghai Municipality (17QA1400400), Shanghai Municipal Education Commission (2017-01-07-00-07-E00062) and Yanchang Petroleum Group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Sun or Huisheng Peng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Feng, J., Deng, J. et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci. China Chem. 63, 1281–1288 (2020). https://doi.org/10.1007/s11426-020-9779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9779-1

Keywords

  • carbon nanotube
  • fiber
  • flexible
  • organic electrochemical transistor