Skip to main content
Log in

Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cell-material and cell-cell interactions represent two crucial aspects of the regulation of cell behavior. In the present study, poly (L-glutamic acid) (PLG) hydrogels were prepared by catalyst-free click crosslinking via a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction between azido-grafted PLG (PLG-N3) and azadibenzocyclooctyne-grafted PLG (PLG-ADIBO). The bioactive peptides c(RGDfK) and N-cadherin mimetic peptide (N-Cad) were both conjugated to the PLG hydrogel (denoted PLG+RGD/N-Cad) in order to regulate cell-material and cell-cell interactions. Gelation time and storage modulus of the hydrogels were tunable through variations in the concentration of polypeptide precursors. The hydrogels degraded gradually in the presence of proteinases. The viability of bone marrow mesenchymal stem cells (BMSCs) was maintained when cultured with extracts of the hydrogels or encapsulated within the hydrogels. Degradation was observed within 10 weeks following the subcutaneous injection of hydrogel solution in rats, displaying excellent histocompatibility in vivo. The introduction of RGD into the PLG hydrogel promoted the adhesion of BMSCs onto the hydrogels. Moreover, when encapsulated within the PLG+RGD/N-Cad hydrogel, BMSCs secreted cartilage-specific matrix, in addition to chondrogenic gene and protein expression being significantly enhanced in comparison with BMSCs encapsulated in hydrogels without N-Cad modification. These findings suggest that these biodegradable, bioactive polypeptide hydrogels have great potential for use in 3D cell culture and in cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R. Mol Ther, 2000, 1: 12–15

    PubMed  CAS  Google Scholar 

  2. Lee KY, Mooney DJ. Chem Rev, 2001, 101: 1869–1880

    PubMed  CAS  Google Scholar 

  3. Moon HJ, Ko DY, Park MH, Joo MK, Jeong B. Chem Soc Rev, 2012, 41: 4860

    PubMed  CAS  Google Scholar 

  4. Tsou YH, Khoneisser J, Huang PC, Xu X. Bioactive Mater, 2016, 1: 39–55

    Google Scholar 

  5. Zhong L, Qu Y, Shi K, Chu B, Lei M, Huang K, Gu Y, Qian Z. Sci China Chem, 2018, 61: 1553–1567

    CAS  Google Scholar 

  6. Yu L, Ding J. Chem Soc Rev, 2008, 37: 1473

    PubMed  CAS  Google Scholar 

  7. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Adv Healthc Mater, 2013, 2: 57–71

    PubMed  CAS  Google Scholar 

  8. Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. Adv Mater, 2015, 26: 85–124

    Google Scholar 

  9. Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z, Loh XJ. Adv Therap, 2019, 2: 1800088

    Google Scholar 

  10. Lv J, Wu G, Liu Y, Li C, Huang F, Zhang Y, Liu J, An Y, Ma R, Shi L. Sci China Chem, 2019, 62: 637–648

    CAS  Google Scholar 

  11. Deming TJ. Prog Polym Sci, 2007, 32: 858–875

    CAS  Google Scholar 

  12. He C, Zhuang X, Tang Z, Tian H, Chen X. Adv Healthc Mater, 2012, 1: 48–78

    PubMed  CAS  Google Scholar 

  13. Shirbin SJ, Karimi F, Chan NJA, Heath DE, Qiao GG. Biomacromolecules, 2016, 17: 2981–2991

    PubMed  CAS  Google Scholar 

  14. Hu C, Liu X, Ran W, Meng J, Zhai Y, Zhang P, Yin Q, Yu H, Zhang Z, Li Y. Biomaterials, 2017, 144: 60–72

    PubMed  CAS  Google Scholar 

  15. Ren K, He C, Xiao C, Li G, Chen X. Biomaterials, 2015, 51: 238–249

    PubMed  CAS  Google Scholar 

  16. Ren K, Cui H, Xu Q, He C, Li G, Chen X. Biomacromolecules, 2016, 17: 3862–3871

    PubMed  CAS  Google Scholar 

  17. Xu Q, He C, Zhang Z, Ren K, Chen X. ACS Appl Mater Interfaces, 2016, 8: 30692–30702

    PubMed  CAS  Google Scholar 

  18. Zhou X, Li Z. Adv Healthc Mater, 2018, 7: 1800020

    Google Scholar 

  19. Patel M, Park S, Lee HJ, Jeong B. Tissue Eng Regen Med, 2018, 15: 521–530

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu R, Shi Z, Sun J, Li Z. Sci China Chem, 2018, 61: 1414–1319

    Google Scholar 

  21. Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, Fang J, Cui L, Chen X, Yin J. J Mater Chem B, 2016, 4: 947–961

    PubMed  CAS  Google Scholar 

  22. Agard NJ, Prescher JA, Bertozzi CR. J Am Chem Soc, 2004, 126: 15046–15047

    PubMed  CAS  Google Scholar 

  23. Kim E, Koo H. Chem Sci, 2019, 10: 7835–7851

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Madl CM, Katz LM, Heilshorn SC. Adv Funct Mater, 2016, 26: 3612–3620

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Xu J, Filion TM, Prifti F, Song J. Chem Asian J, 2011, 6: 2730–2737

    PubMed  PubMed Central  CAS  Google Scholar 

  26. DeForest CA, Anseth KS. Annu Rev Chem Biomol Eng, 2012, 3: 421–444

    PubMed  CAS  Google Scholar 

  27. Tibbitt MW, Rodell CB, Burdick JA, Anseth KS. Proc Natl Acad Sci USA, 2015, 112: 14444–14451

    PubMed  CAS  Google Scholar 

  28. Shi S, Yu SJ, Li G, He CL, Chen XS. Sci China Technol Sci, 2020, https://doi.org/10.1007/s11431-019-1466-1

    Google Scholar 

  29. Hersel U, Dahmen C, Kessler H. Biomaterials, 2003, 24: 4385–4415

    PubMed  CAS  Google Scholar 

  30. Leahy DJ, Aukhil I, Erickson HP. Cell, 1996, 84: 155–164

    PubMed  CAS  Google Scholar 

  31. Yao X, Peng R, Ding J. Adv Mater, 2013, 25: 5257–5286

    PubMed  CAS  Google Scholar 

  32. DeLise AM, Tuan RS. J Cell Biochem, 2002, 87: 342–359

    PubMed  CAS  Google Scholar 

  33. Delise AM, Tuan RS. Dev Dyn, 2002, 225: 195–204

    PubMed  CAS  Google Scholar 

  34. Gumbiner BM. Nat Rev Mol Cell Biol, 2005, 6: 622–634

    PubMed  CAS  Google Scholar 

  35. Blaschuk OW, Sullivan R, David S, Pouliot Y. Dev Biol, 1990, 139: 227–229

    PubMed  CAS  Google Scholar 

  36. Williams E, Williams G, Gour BJ, Blaschuk OW, Doherty P. J Biol Chem, 2000, 275: 4007–4012

    PubMed  CAS  Google Scholar 

  37. Li R, Xu J, Wong DSH, Li J, Zhao P, Bian L. Biomaterials, 2017, 145: 33–43

    PubMed  CAS  Google Scholar 

  38. Bian L, Guvendiren M, Mauck RL, Burdick JA. Proc Natl Acad Sci USA, 2013, 110: 10117–10122

    PubMed  CAS  Google Scholar 

  39. Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL. Nat Mater, 2016, 15: 1297–1306

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Kwon MY, Vega SL, Gramlich WM, Kim M, Mauck RL, Burdick JA. Adv Healthc Mater, 2018, 7: 1701199

    Google Scholar 

  41. Zhao C, Zhuang X, He C, Chen X, Jing X. Macromol Rapid Commun, 2008, 29: 1810–1816

    CAS  Google Scholar 

  42. Cheng Y, He C, Xiao C, Ding J, Zhuang X, Chen X. Polym Chem, 2011, 2: 2627

    CAS  Google Scholar 

  43. Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ. ACS Nano, 2012, 6: 4530–4539

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Mann T, Leone E. Biochem J, 1953, 53: 140–148

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Chung C, Anderson E, Pera RR, Pruitt BL, Heilshorn SC. Soft Matter, 2012, 8: 10141

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA. Biomaterials, 2013, 34: 413–421

    PubMed  CAS  Google Scholar 

  47. M. Jonker A, A. Bode S, H. Kusters A, van Hest JCM, Löwik DWPM. Macromol Biosci, 2015, 15: 1338–1347

    Google Scholar 

  48. Even-Ram S, Artym V, Yamada KM. Cell, 2006, 126: 645–647

    PubMed  CAS  Google Scholar 

  49. Sridhar BV, Brock JL, Silver JS, Leight JL, Randolph MA, Anseth KS. Adv Healthc Mater, 2015, 4: 702–713

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Ren K, He C, Cheng Y, Li G, Chen X. Polym Chem, 2014, 5: 5069–5076

    CAS  Google Scholar 

  51. Park H, Choi B, Hu J, Lee M. Acta Biomater, 2013, 9: 4779–4786

    PubMed  CAS  Google Scholar 

  52. Qu C, Bao Z, Zhang X, Wang Z, Ren J, Zhou Z, Tian M, Cheng X, Chen X, Feng C. Int J Biol Macromolecules, 2019, 125: 78–86

    CAS  Google Scholar 

  53. Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Biomaterials, 2019, 217: 119294

    PubMed  CAS  Google Scholar 

  54. Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, Khademhosseini A, Shi S, Moshaverinia A. Ann Biomed Eng, 2016, 44: 1908–1920

    PubMed  PubMed Central  Google Scholar 

  55. Hong KH, Song SC. Biomaterials, 2019, 218: 119338

    PubMed  CAS  Google Scholar 

  56. Yang J, Zhang YS, Yue K, Khademhosseini A. Acta Biomater, 2017, 57: 1–25

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973218, 51622307, 21574127, 51520105004) and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoliang He.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9772_MOESM1_ESM.docx

Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Zhang, Z., He, C. et al. Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells. Sci. China Chem. 63, 1100–1111 (2020). https://doi.org/10.1007/s11426-020-9772-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9772-0

Keywords

Navigation