Skip to main content
Log in

Dynamical and allosteric regulation of photoprotection in light harvesting complex II

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Major light-harvesting complex of photosystem II (LHCII) plays a dual role in light-harvesting and excited energy dissipation to protect photodamage from excess energy. The regulatory switch is induced by increased acidity, temperature or both. However, the molecular origin of the protein dynamics at the atomic level is still unknown. We carried out temperature-jump time-resolved infrared spectroscopy and molecular dynamics simulations to determine the energy quenching dynamics and conformational changes of LHCII trimers. We found that the spontaneous formation of a pair of local α-helices from the 310-helix E/loop and the C-terminal coil of the neighboring monomer, in response to the increased environmental temperature and/or acidity, induces a scissoring motion of transmembrane helices A and B, shifting the conformational equilibrium to a more open state, with an increased angle between the associated carotenoids. The dynamical and allosteric conformation change leads to close contacts between carotenoid lutein 1 and chlorophyll pigment 612, facilitating the fluorescence quenching. Based on these results, we suggest a unified mechanism by which the LHCII trimer controls the dissipation of excess excited energy in response to increased temperature and acidity, as an intrinsic result of intense sun light in plant photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demmig-Adams B, Garab G, Adams W III, Govindjee. Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. In: Govindjee, Sharkey TD, Eds. Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. Vol 40. The Netherlands: Springer Science & Business Media, 2014

    Google Scholar 

  2. Rochaix JD. Annu Rev Plant Biol, 2014, 65: 287–309

    PubMed  CAS  Google Scholar 

  3. Ruban AV. FEBS Lett, 2018, 592: 3030–3039

    PubMed  CAS  Google Scholar 

  4. Müller P, Li XP, Niyogi KK. Plant Physiol, 2001, 125: 1558–1566

    PubMed  PubMed Central  Google Scholar 

  5. Nicol L, Nawrocki WJ, Croce R. Nat Plants, 2019, 5: 1177–1183

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Croce R, van Amerongen H. Nat Chem Biol, 2014, 10: 492–501

    PubMed  CAS  Google Scholar 

  7. Külheim C, Agren J, Jansson S. Science, 2002, 297: 91–93

    PubMed  Google Scholar 

  8. Tian L, Nawrocki WJ, Liu X, Polukhina I, van Stokkum IHM, Croce R. Proc Natl Acad Sci USA, 2019, 116: 8320–8325

    PubMed  CAS  Google Scholar 

  9. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. FEBS Lett, 2008, 582: 3625–3631

    PubMed  CAS  Google Scholar 

  10. Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P. Nat Plants, 2016, 2: 15225

    PubMed  CAS  Google Scholar 

  11. Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Chem Phys Lett, 2009, 483: 262–267

    CAS  Google Scholar 

  12. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP. Science, 2016, 354: 857–861

    PubMed  CAS  Google Scholar 

  13. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG. Proc Natl Acad Sci USA, 2015, 112: 8529–8536

    PubMed  CAS  Google Scholar 

  14. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, Blankenship RE, Fleming GR. Nature, 2007, 446: 782–786

    CAS  Google Scholar 

  15. Arsenault EA, Yoneda Y, Iwai M, Niyogi KK, Fleming GR. Nat Commun, 2020, 11: 1460

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Pinnola A, Bassi R. Biochem Soc Trans, 2018, 46: 467–482

    PubMed  CAS  Google Scholar 

  17. Ruban AV, Johnson MP, Duffy CDP. Biochim Biophysica Acta (BBA), 2012, 1817: 167–181

    CAS  Google Scholar 

  18. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Nature, 2004, 428: 287–292

    PubMed  CAS  Google Scholar 

  19. Kühlbrandt W, Wang DN, Fujiyoshi Y. Nature, 1994, 367: 614–621

    PubMed  Google Scholar 

  20. Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W. EMBO J, 2005, 24: 919–928

    CAS  Google Scholar 

  21. Caffarri S, Kouril R, Kereïche S, Boekema EJ, Croce R. EMBO J, 2009, 28: 3052–3063

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z. Nature, 2016, 534: 69–74

    PubMed  CAS  Google Scholar 

  23. Sunku K, de Groot HJM, Pandit A. J Biol Chem, 2013, 288: 19796–19804

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang C, Lambrev P, Chen Z, Jávorfi T, Kiss AZ, Paulsen H, Garab G. Biochim Biophysica Acta (BBA), 2008, 1777: 1463–1470

    CAS  Google Scholar 

  25. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A. Nature, 2005, 436: 134–137

    PubMed  CAS  Google Scholar 

  26. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Nature, 2007, 450: 575–578

    PubMed  CAS  Google Scholar 

  27. Bode S, Quentmeier CC, Liao PN, Barros T, Walla PJ. Chem Phys Lett, 2008, 450: 379–385

    CAS  Google Scholar 

  28. Liao PN, Bode S, Wilk L, Hafi N, Walla PJ. Chem Phys, 2010, 373: 50–55

    CAS  Google Scholar 

  29. Liao PN, Pillai S, Gust D, Moore TA, Moore AL, Walla PJ. J Phys Chem A, 2011, 115: 4082–4091

    PubMed  CAS  Google Scholar 

  30. Holleboom CP, Walla PJ. Photosynth Res, 2014, 119: 215–221

    PubMed  CAS  Google Scholar 

  31. Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ. Proc Natl Acad Sci USA, 2009, 106: 12311–12316

    PubMed  CAS  Google Scholar 

  32. Valkunas L, Chmeliov J, Krüger TPJ, Ilioaia C, van Grondelle R. J Phys Chem Lett, 2012, 3: 2779–2784

    CAS  Google Scholar 

  33. Daskalakis V, Maity S, Hart CL, Stergiannakos T, Duffy CDP, Kleinekathöfer U. J Phys Chem B, 2019, 123: 9609–9615

    PubMed  CAS  Google Scholar 

  34. Ilioaia C, Johnson MP, Horton P, Ruban AV. J Biol Chem, 2008, 283: 29505–29512

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Schlau-Cohen GS, Yang HY, Krüger TPJ, Xu P, Gwizdala M, van Grondelle R, Croce R, Moerner WE. J Phys Chem Lett, 2015, 6: 860–867

    PubMed  CAS  Google Scholar 

  36. Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C. Plant Physiol, 2007, 143: 629–638

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR. Science, 2005, 307: 433–436

    CAS  Google Scholar 

  38. Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR. Science, 2008, 320: 794–797

    PubMed  CAS  Google Scholar 

  39. Amarie S, Wilk L, Barros T, Kühlbrandt W, Dreuw A, Wachtveitl J. Biochim Biophysica Acta (BBA), 2009, 1787: 747–752

    CAS  Google Scholar 

  40. Park S, Steen CJ, Fischer AL, Fleming GR. Photosynth Res, 2019, 141: 367–376

    PubMed  CAS  Google Scholar 

  41. Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR. J Biol Chem, 2008, 283: 3550–3558

    PubMed  CAS  Google Scholar 

  42. Miloslavina Y, de Bianchi S, Dall’Osto L, Bassi R, Holzwarth AR. J Biol Chem, 2011, 286: 36830–36840

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P. Biochim Biophysica Acta (BBA), 2010, 1797: 466–475

    CAS  Google Scholar 

  44. Ansari AQ, Loomis WE. Am J Bot, 1959, 46: 713–717

    Google Scholar 

  45. Pereira AB, Villa Nova NA, Galvani E. Biosyst Eng, 2003, 86: 27–34

    Google Scholar 

  46. Ruban AV, Pesaresi P, Wacker U, Irrgang KDJ, Bassi R, Horton P. Biochemistry, 1998, 37: 11586–11591

    PubMed  CAS  Google Scholar 

  47. Zhou R, Chen W, Jiang X, Wang S, Gong Q. Appl Phys Lett, 2010, 96: 133309

    Google Scholar 

  48. Li D, Li Y, Li H, Wu X, Yu Q, Weng Y. Rev Sci Instrum, 2015, 86: 053105

    PubMed  Google Scholar 

  49. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W. J Comput Chem, 2014, 35: 1997–2004

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. J Chem Phys, 1983, 79: 926–935

    CAS  Google Scholar 

  51. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. J Comput Chem, 2003, 24: 1999–2012

    PubMed  CAS  Google Scholar 

  52. Zhang L, Silva DA, Yan YJ, Huang X. J Comput Chem, 2012, 33: 1969–1980

    PubMed  CAS  Google Scholar 

  53. Wang J, Wang W, Kollman PA, Case DA. J Mol Graph, 2006, 25: 247–260

    Google Scholar 

  54. Hess B, Kutzner C, van der Spoel D, Lindahl E. J Chem Theor Comput, 2008, 4: 435–447

    CAS  Google Scholar 

  55. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. J Comput Chem, 1997, 18: 1463–1472

    CAS  Google Scholar 

  56. Darden T, York D, Pedersen L. J Chem Phys, 1993, 98: 10089–10092

    CAS  Google Scholar 

  57. Parrinello M, Rahman A. Phys Rev Lett, 1980, 45: 1196–1199

    CAS  Google Scholar 

  58. Bowman GR, Ensign DL, Pande VS. J Chem Theor Comput, 2010, 6: 787–794

    CAS  Google Scholar 

  59. Wentworth M, Ruban AV, Horton P. J Biol Chem, 2003, 278: 21845–21850

    PubMed  CAS  Google Scholar 

  60. van Oort B, van Hoek A, Ruban AV, van Amerongen H. J Phys Chem B, 2007, 111: 7631–7637

    PubMed  CAS  Google Scholar 

  61. Santabarbara S, Horton P, Ruban AV. Biophys J, 2009, 97: 1188–1197

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Krause GH. Photosynthetica, 1992, 27: 249–252

    CAS  Google Scholar 

  63. Ren H, Provorse MR, Bao P, Qu Z, Gao J. J Phys Chem Lett, 2016, 7: 2286–2293

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Gao J, Grofe A, Ren H, Bao P. J Phys Chem Lett, 2016, 7: 5143–5149

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Dockter C, Müller AH, Dietz C, Volkov A, Polyhach Y, Jeschke G, Paulsen H. J Biol Chem, 2012, 287: 2915–2925

    PubMed  CAS  Google Scholar 

  66. Zhang Y, Li B, Xu Y, Li H, Li S, Zhang D, Mao Z, Guo S, Yang C, Weng Y, Chong K. Plant Cell, 2013, 25: 2504–2521

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Li S, Wang R, Li D, Ma J, Li H, He X, Chang Z, Weng Y. Sci Rep, 2014, 4: 4834

    PubMed  PubMed Central  Google Scholar 

  68. Liu C, Rao Y, Zhang L, Yang C. J Biochem, 2014, 156: 203–210

    PubMed  CAS  Google Scholar 

  69. Kuttkat A, Hartmann A, Hobe S, Paulsen H. Eur J Biochem, 1996, 242: 288–292

    PubMed  CAS  Google Scholar 

  70. Belgio E, Duffy CDP, Ruban AV. Phys Chem Chem Phys, 2013, 15: 12253–12261

    PubMed  CAS  Google Scholar 

  71. Yan H, Zhang P, Wang C, Liu Z, Chang W. Biochem Biophys Res Commun, 2007, 355: 457–463

    PubMed  CAS  Google Scholar 

  72. Jas GS, Kuczera K. Biophys J, 2004, 87: 3786–3798

    CAS  Google Scholar 

  73. Seelig J, Schönfeld HJ. Quart Rev Biophys, 2016, 49: e9

    Google Scholar 

  74. Marqusee S, Robbins VH, Baldwin RL. Proc Natl Acad Sci USA, 1989, 86: 5286–5290

    PubMed  CAS  Google Scholar 

  75. Polívka T, Zigmantas D, Sundström V, Formaggio E, Cinque G, Bassi R. Biochemistry, 2002, 41: 439–450

    PubMed  Google Scholar 

  76. Mascoli V, Liguori N, Xu P, Roy LM, van Stokkum IHM, Croce R. Chem, 2019, 5: 2900–2912

    CAS  Google Scholar 

  77. Wehling A, Walla PJ. Photosynth Res, 2006, 90: 101–110

    PubMed  CAS  Google Scholar 

  78. Papadatos S, Charalambous AC, Daskalakis V. Sci Rep, 2017, 7: 2523

    PubMed  PubMed Central  Google Scholar 

  79. Johnson MP, Brain APR, Ruban AV. Plant Signal Behav, 2011, 6: 1386–1390

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Tardy F, Havaux M. Biochim Biophysica Acta (BBA), 1997, 1330: 179–193

    CAS  Google Scholar 

  81. Janik E, Bednarska J, Zubik M, Puzio M, Luchowski R, Grudzinski W, Mazur R, Garstka M, Maksymiec W, Kulik A, Dietler G, Gruszecki WI. Plant Cell, 2013, 25: 2155–2170

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Seiwert D, Witt H, Janshoff A, Paulsen H. Sci Rep, 2017, 7: 5158

    PubMed  PubMed Central  Google Scholar 

  83. Tietz S, Leuenberger M, Höhner R, Olson AH, Fleming GR, Kirchhoff H. J Biol Chem, 2020, 295: 1857–1866

    PubMed  CAS  Google Scholar 

  84. Murakami S, Packer L. J Cell Biol, 1970, 47: 332–351

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Duffy CDP, Pandit A, Ruban AV. Phys Chem Chem Phys, 2014, 16: 5571–5580

    PubMed  CAS  Google Scholar 

  86. Balevičius V Jr., Fox KF, Bricker WP, Jurinovich S, Prandi IG, Mennucci B, Duffy CDP. Sci Rep, 2017, 7: 13956

    PubMed  PubMed Central  Google Scholar 

  87. Mullineaux CW, Ruban AV, Horton P. Biochim Biophysica Acta (BBA), 1994, 1185: 119–123

    CAS  Google Scholar 

  88. Clark AH, Saunderson DHP, Suggett A. Int J Peptide Protein Res, 1981, 17: 353–364

    CAS  Google Scholar 

  89. Neuweiler H, Johnson CM, Fersht AR. Proc Natl Acad Sci USA, 2009, 106: 18569–18574

    PubMed  CAS  Google Scholar 

  90. Dall’Osto L, Cazzaniga S, Bressan M, Paleček D, Židek K, Niyogi KK, Fleming GR, Zigmantas D, Bassi R. Nat Plants, 2017, 3: 17033

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21433014, 11721404, 21533003), the Ministry of Science and Technology (2017YFB0203400), Chinese Academy of Sciences Innovation Program (KJCX2-YW-W25) and the National Institutes of Health (GM46736, GM64742). Y.W. thanks Prof. Tingyun Kuang for encouragement, Prof. Xinguang Zhu for in-depth discussion, Prof. Chunhong Yang for the single-site mutant S123G sample, and Miss Ju Wang and Prof. Shufeng Wang from Peking University for the help in streak camera measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiali Gao or Yuxiang Weng.

Supplemental Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, Y., Ye, M. et al. Dynamical and allosteric regulation of photoprotection in light harvesting complex II. Sci. China Chem. 63, 1121–1133 (2020). https://doi.org/10.1007/s11426-020-9771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9771-2

Keywords

Navigation