Skip to main content
Log in

Regulating silver nanowire size enables efficient photoelectric conversion

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The increasing demand for the state-of-the-art transparent conductive electrodes has received great interest in synthesizing silver nanowires (AgNWs) with a uniform diameter that exhibit excellent conductance, transparency, flexibility and mechanical ductility. Herein, we report the controllable synthesis of ultrathin AgNWs with high aspect ratio via a polyol-assisted process. The diameter of AgNWs can be continuously modulated from 20 to 80 nm by simply adjusting the aging time. The self-assembled films fabricated by using AgNWs with a diameter of 20 nm as building blocks enable an excellent performance and show a sheet resistance of ∼30 Ω/sq and an optical transmittance of 94%. In addition, such nanowire-based conductive films can keep the excellent flexibility and resistance after bending 10,000 cycles. Similarly, the intelligent dimming films prepared by this AgNW films also have excellent flexibility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers JA, Someya T, Huang Y. Science, 2010, 327: 1603–1607

    Article  CAS  Google Scholar 

  2. Ye S, Rathmell AR, Chen Z, Stewart IE, Wiley BJ. Adv Mater, 2014, 26: 6670–6687

    Article  CAS  Google Scholar 

  3. Jo HA, Jang HW, Hwang BY, Kim YH, Kim JY. RSC Adv, 2016, 6: 104273

    Article  CAS  Google Scholar 

  4. Li B, Ye S, Stewart IE, Alvarez S, Wiley BJ. Nano Lett, 2015, 15: 6722–6726

    Article  CAS  Google Scholar 

  5. Wu Y, Xiang J, Yang C, Lu W, Lieber CM. Nature, 2004, 430: 61–65

    Article  CAS  Google Scholar 

  6. Amjadi M, Kyung KU, Park I, Sitti M. Adv Funct Mater, 2016, 26: 1678–1698

    Article  CAS  Google Scholar 

  7. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP. Nanotechnology, 2013, 24: 452001

    Article  CAS  Google Scholar 

  8. Wu H, Kong D, Ruan Z, Hsu PC, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y. Nat Nanotech, 2013, 8: 421–425

    Article  CAS  Google Scholar 

  9. Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim TS, Lee D, Ko SH. Adv Funct Mater, 2013, 23: 4171–4176

    Article  CAS  Google Scholar 

  10. Xu F, Zhu Y. Adv Mater, 2012, 24: 5117–5122

    Article  CAS  Google Scholar 

  11. Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Greyson Christoforo M, Cui Y, McGehee MD, Brongersma ML. Nat Mater, 2012, 11: 241–249

    Article  CAS  Google Scholar 

  12. Bergin SM, Chen YH, Rathmell AR, Charbonneau P, Li ZY, Wiley BJ. Nanoscale, 2012, 4: 1996–2004

    Article  CAS  Google Scholar 

  13. da Silva RR, Yang M, Choi SI, Chi M, Luo M, Zhang C, Li ZY, Camargo PHC, Ribeiro SJL, Xia Y. ACS Nano, 2016, 10: 7892–7900

    Article  CAS  Google Scholar 

  14. Bai L, Ma X, Liu J, Sun X, Zhao D, Evans DG. J Am Chem Soc, 2010, 132: 2333–2337

    Article  CAS  Google Scholar 

  15. Mayousse C, Celle C, Carella A, Simonato JP. Nano Res, 2014, 7: 315–324

    Article  CAS  Google Scholar 

  16. Zhang Y, Guo J, Xu D, Sun Y, Yan F. ACS Appl Mater Interfaces, 2017, 9: 25465–25473

    Article  CAS  Google Scholar 

  17. Pradel KC, Sohn K, Huang J. Angew Chem Int Ed, 2011, 50: 3412–3416

    Article  CAS  Google Scholar 

  18. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y. Chem Mater, 2002, 14: 4736–4745

    Article  CAS  Google Scholar 

  19. Wiley B, Herricks T, Sun Y, Xia Y. Nano Lett, 2004, 4: 1733–1739

    Article  CAS  Google Scholar 

  20. Lee EJ, Kim YH, Hwang DK, Choi WK, Kim JY. RSC Adv, 2016, 6: 11702–11710

    Article  CAS  Google Scholar 

  21. Sun Y, Mayers B, Herricks T, Xia Y. Nano Lett, 2003, 3: 955–960

    Article  CAS  Google Scholar 

  22. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. Adv Mater, 2003, 15: 353–389

    Article  CAS  Google Scholar 

  23. Angmo D, Andersen TR, Bentzen JJ, Helgesen M, Søndergaard RR, Jørgensen M, Carlé JE, Bundgaard E, Krebs FC. Adv Funct Mater, 2015, 25: 4539–4547

    Article  CAS  Google Scholar 

  24. Deng B, Hsu PC, Chen G, Chandrashekar BN, Liao L, Ayitimuda Z, Wu J, Guo Y, Lin L, Zhou Y, Aisijiang M, Xie Q, Cui Y, Liu Z, Peng H. Nano Lett, 2015, 15: 4206–4213

    Article  CAS  Google Scholar 

  25. Kim DJ, Shin HI, Ko EH, Kim KH, Kim TW, Kim HK. Sci Rep, 2016, 6: 34322

    Article  CAS  Google Scholar 

  26. Kim S, Kim SY, Chung MH, Kim J, Kim JH. J Mater Chem C, 2015, 3: 5859–5868

    Article  CAS  Google Scholar 

  27. Araki T, Jiu J, Nogi M, Koga H, Nagao S, Sugahara T, Suganuma K. Nano Res, 2014, 7: 236–245

    Article  CAS  Google Scholar 

  28. Cui F, Yu Y, Dou L, Sun J, Yang Q, Schildknecht C, Schierle-Arndt K, Yang P. Nano Lett, 2015, 15: 7610–7615

    Article  CAS  Google Scholar 

  29. Preston C, Xu Y, Han X, Munday JN, Hu L. Nano Res, 2013, 6: 461–468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572067, 21501039, 21701165, 51732011, 21761132008, 51502281, 21805192), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (21521001), Key Research Program of Frontier Sciences, CAS (QYZDJ-SSWSLH036), the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (2015HSC-UE007), the Fundamental Research Funds for the Central Universities (JZ2018HGPA0269). This work was carried out in part at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Xin He or Shu-Hong Yu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wang, K., Li, Y. et al. Regulating silver nanowire size enables efficient photoelectric conversion. Sci. China Chem. 63, 1046–1052 (2020). https://doi.org/10.1007/s11426-020-9769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9769-7

Keywords

Navigation