Skip to main content
Log in

Halogen modified two-dimensional covalent triazine frameworks as visible-light driven photocatalysts for overall water splitting

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The covalent triazine framework CTF-1 as a member of the two-dimensional covalent organic frameworks (COFs) is a category of novel metal-free photocatalysts for water splitting. The large band gap severely restricts its energy conversion efficiency. By means of the first-principles calculations, we proposed the decoration of CTF-1 by anchoring halogen atoms onto benzene moieties for improving the solar-to-hydrogen (STH) efficiency. The electronic structures reveal that the halogen substitution successfully decreases the band gap of CTF-1. Meanwhile, the calculated free energy changes along the reaction pathway indicate that all these COFs can spontaneously drive overall water splitting under light irradiation in a specific acid-base environment. The time-dependent ab initio non-adiabatic molecular dynamics simulations suggest that the electron-hole recombination periods of these COFs fall in a few to tens of nanoseconds. Excitingly, CTF-1 modified by linking six iodine atoms onto the benzene ring in the para-position (CTF-1-6I) shows a quite low band gap of 2.81 eV, indicating that it is a visible-light driven COF for overall photocatalytic water splitting. Correspondingly, CTF-1-6I also exhibits an extraordinarily promising STH efficiency of 3.70%, which is an order magnitude higher than that of the pristine CTF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling X, Xu Y, Wu S, Liu M, Yang P, Qiu C, Zhang G, Zhou H, Su C. Sci China Chem, 2020, 63: 386–392

    CAS  Google Scholar 

  2. Fu CF, Wu X, Yang J. Adv Mater, 2018, 30: 1802106

    Google Scholar 

  3. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Chem Soc Rev, 2017, 46: 4645–4660

    PubMed  CAS  Google Scholar 

  4. Wang J, Zhang J, Peh SB, Liu G, Kundu T, Dong J, Ying Y, Qian Y, Zhao D. Sci China Chem, 2020, 63: 192–197

    CAS  Google Scholar 

  5. Fujishima A, Honda K. Nature, 1972, 238: 37–38

    PubMed  CAS  Google Scholar 

  6. Zou Z, Ye J, Sayama K, Arakawa H. Nature, 2001, 414: 625–627

    PubMed  CAS  Google Scholar 

  7. Gai Y, Li J, Li SS, Xia JB, Wei SH. Phys Rev Lett, 2009, 102: 36402

    Google Scholar 

  8. Wang X, Wang F, Sang Y, Liu H. Adv Energy Mater, 2017, 7: 1700473

    Google Scholar 

  9. Young JL, Steiner MA, Döscher H, France RM, Turner JA, Deutsch TG. Nat Energy, 2017, 2: 17028

    CAS  Google Scholar 

  10. Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, Bilir T, Harris JS, Jaramillo TF. Nat Commun, 2016, 7: 13237

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Science, 2015, 347: 970–974

    PubMed  CAS  Google Scholar 

  12. Goto Y, Hisatomi T, Wang Q, Higashi T, Ishikiriyama K, Maeda T, Sakata Y, Okunaka S, Tokudome H, Katayama M, Akiyama S, Nishiyama H, Inoue Y, Takewaki T, Setoyama T, Minegishi T, Takata T, Yamada T, Domen K. Joule, 2018, 2: 509–520

    CAS  Google Scholar 

  13. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. Science, 2016, 353: aac9439

    PubMed  CAS  Google Scholar 

  14. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H. Chem Rev, 2017, 117: 6225–6331

    PubMed  CAS  Google Scholar 

  15. Fu CF, Zhang R, Luo Q, Li X, Yang J. J Comput Chem, 2019, 40: 980–987

    PubMed  CAS  Google Scholar 

  16. Fu CF, Sun J, Luo Q, Li X, Hu W, Yang J. Nano Lett, 2018, 18: 6312–6317

    PubMed  CAS  Google Scholar 

  17. Qiao M, Liu J, Wang Y, Li Y, Chen Z. J Am Chem Soc, 2018, 140: 12256–12262

    PubMed  CAS  Google Scholar 

  18. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Nat Nanotech, 2016, 11: 218–230

    CAS  Google Scholar 

  19. Singh AK, Mathew K, Zhuang HL, Hennig RG. J Phys Chem Lett, 2015, 6: 1087–1098

    PubMed  CAS  Google Scholar 

  20. Xu Y, Kraft M, Xu R. Chem Soc Rev, 2016, 45: 3039–3052

    PubMed  CAS  Google Scholar 

  21. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. Nat Mater, 2009, 8: 76–80

    PubMed  CAS  Google Scholar 

  22. Zhang Y, Antonietti M. Chem Asian J, 2010, 5: 1307–1311

    PubMed  CAS  Google Scholar 

  23. Wirth J, Neumann R, Antonietti M, Saalfrank P. Phys Chem Chem Phys, 2014, 16: 15917–15926

    PubMed  CAS  Google Scholar 

  24. Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Adv Mater, 2017, 29: 1702428

    Google Scholar 

  25. Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010–6022

    PubMed  CAS  Google Scholar 

  26. Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585

    PubMed  Google Scholar 

  27. Meier CB, Clowes R, Berardo E, Jelfs KE, Zwijnenburg MA, Sprick RS, Cooper AI. Chem Mater, 2019, 31: 8830–8838

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Lan ZA, Fang Y, Zhang Y, Wang X. Angew Chem Int Ed, 2018, 57: 470–474

    CAS  Google Scholar 

  29. Jiang X, Wang P, Zhao J. J Mater Chem A, 2015, 3: 7750–7758

    CAS  Google Scholar 

  30. Schwinghammer K, Hug S, Mesch MB, Senker J, Lotsch BV. Energy Environ Sci, 2015, 8: 3345–3353

    CAS  Google Scholar 

  31. Wan Y, Wang L, Xu H, Wu X, Yang J. J Am Chem Soc, 2020, 142: 4508–4516

    PubMed  CAS  Google Scholar 

  32. Petrone DA, Ye J, Lautens M. Chem Rev, 2016, 116: 8003–8104

    PubMed  CAS  Google Scholar 

  33. Tang ML, Bao Z. Chem Mater, 2011, 23: 446–455

    CAS  Google Scholar 

  34. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    CAS  Google Scholar 

  35. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    CAS  Google Scholar 

  36. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Google Scholar 

  37. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    PubMed  CAS  Google Scholar 

  39. Heyd J, Scuseria GE, Ernzerhof M. J Chem Phys, 2003, 118: 8207–8215

    CAS  Google Scholar 

  40. Grimme S. J Comput Chem, 2006, 27: 1787–1799

    PubMed  CAS  Google Scholar 

  41. Howalt JG, Bligaard T, Rossmeisl J, Vegge T. Phys Chem Chem Phys, 2013, 15: 7785–7795

    PubMed  CAS  Google Scholar 

  42. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. J Phys Chem B, 2004, 108: 17886–17892

    Google Scholar 

  43. Zheng Q, Chu W, Zhao C, Zhang L, Guo H, Wang Y, Jiang X, Zhao J. WIREs Comput Mol Sci, 2019, 9: e1411

    CAS  Google Scholar 

  44. Jaeger HM, Fischer S, Prezhdo OV. J Chem Phys, 2012, 137: 22A545

    Google Scholar 

  45. Zheng Q, Saidi WA, Xie Y, Lan Z, Prezhdo OV, Petek H, Zhao J. Nano Lett, 2017, 17: 6435–6442

    PubMed  CAS  Google Scholar 

  46. Chu W, Saidi WA, Zheng Q, Xie Y, Lan Z, Prezhdo OV, Petek H, Zhao J. J Am Chem Soc, 2016, 138: 13740–13749

    PubMed  CAS  Google Scholar 

  47. Fischer SA, Duncan WR, Prezhdo OV. Am Chem Soc, 2009, 131: 15483–15491

    CAS  Google Scholar 

  48. Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A. Chem Mater, 2013, 25: 1542–1548

    CAS  Google Scholar 

  49. Khazaee Z, Khavar AHC, Mahjoub AR, Motaee A, Srivastava V, Sillanpää M. Sol Energy, 2020, 196: 567–581

    CAS  Google Scholar 

  50. Jin C, Ma EY, Karni O, Regan EC, Wang F, Heinz TF. Nat Nanotech, 2018, 13: 994–1003

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21688102), the National Key Research and Development Program of China (2016YFA0200604), and Anhui Initiative in Quantum Information Technologies (AHY090400). The numerical calculations have been done on the supercomputing system in the Super-computing Center of University of Science and Technology of China and Supercomputing Center of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9766_MOESM1_ESM.docx

Halogen modified two-dimensional covalent triazine frameworks as visible-light driven photocatalysts for overall water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, CF., Zhao, C., Zheng, Q. et al. Halogen modified two-dimensional covalent triazine frameworks as visible-light driven photocatalysts for overall water splitting. Sci. China Chem. 63, 1134–1141 (2020). https://doi.org/10.1007/s11426-020-9766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9766-5

Keywords

Navigation