Skip to main content
Log in

Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As a new member of the carbon family, graphdiyne is an intrinsic semiconductor featuring a natural bandgap, which endues it potential for direct application in photoelectric devices. However, without cooperating with other active materials, conventional hexacetylene-benzene graphdiyne (HEB-GDY) shows poor performances in photocatalysis and photoelectric devices due to its non-ideal visible light absorption, low separation efficiency of the photogenerated carriers and insufficient sites for hydrogen production. Herein, we report a molecular engineering strategy for the regulation of GDY-based carbon materials, by incorporating a strong pyrene absorption group into the matrix of graphdiyne, to obtain pyrenyl graphdiyne (Pyr-GDY) nanofibers through a modified Glaser-Hay coupling reaction of 1,3,6,8-tetraethynylpyrene (TEP) monomers. For comparison, phenyl graphdiyne (Phe-GDY) nanosheets were also constructed using 1,3,4,6-tetraethynylbenzene (TEB) as a monomer. Compared with Phe-GDY, Pyr-GDY exhibits a wider visible light absorption band, promoted efficiency of the charge separation/transport and more sufficient active sites for water reduction. As a result, Pyr-GDY alone displays superior photoelectrocatalytic performance for water splitting, giving a cathode photocurrent density of ~138 μA cm−2 at a potential of −0.1 Vversus normal hydrogen electrode (NHE) in neutral aqueous solution, which is almost ten and twelve times as high as those of Phe-GDY (14 μA cm−2) and HEB-GDY (12 μA cm−2), respectively. Such a performance is also superior to those of most reported carbon-based metal-free photocathode. The results of theoretical calculations reveal that the carbon atoms in the acetylene bonds are the active sites for proton reduction. This work offers a new strategy for the construction of graphdiyne-based metal-free photo-electrocatalysts with enhanced photoelectrocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kittner N, Lill F, Kammen DM. Nat Energy, 2017, 2: 17125

    Google Scholar 

  2. Lewis NS. Science, 2016, 351: aad1920

    PubMed  Google Scholar 

  3. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. Renew Sustain Energy Rev, 2018, 82: 894–900

    Google Scholar 

  4. Zou X, Zhang Y. Chem Soc Rev, 2015, 44: 5148–5180

    PubMed  CAS  Google Scholar 

  5. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Chem Soc Rev, 2014, 43: 7787–7812

    PubMed  CAS  Google Scholar 

  6. Wu LZ, Chen B, Li ZJ, Tung CH. Acc Chem Res, 2014, 47: 2177–2185

    PubMed  CAS  Google Scholar 

  7. Li B, Si Y, Zhou BX, Fang Q, Li YY, Huang WQ, Hu W, Pan A, Fan X, Huang GF. ACS Appl Mater Interfaces, 2019, 11: 17341–17349

    PubMed  CAS  Google Scholar 

  8. Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE. J Am Chem Soc, 2009, 131: 926–927

    PubMed  CAS  Google Scholar 

  9. Fujishima A, Honda K. Nature, 1972, 238: 37–38

    PubMed  CAS  Google Scholar 

  10. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Chem Soc Rev, 2017, 46: 4645–4660

    PubMed  CAS  Google Scholar 

  11. Bellani S, Antognazza MR, Bonaccorso F. Adv Mater, 2019, 31: 1801446

    Google Scholar 

  12. Li J, Gao X, Liu B, Feng Q, Li XB, Huang MY, Liu Z, Zhang J, Tung CH, Wu LZ. J Am Chem Soc, 2016, 138: 3954–3957

    PubMed  CAS  Google Scholar 

  13. Han YY, Lu XL, Tang SF, Yin XP, Wei ZW, Lu TB. Adv Energy Mater, 2018, 8: 1702992

    Google Scholar 

  14. Li YY, Si Y, Han EX, Huang WQ, Hu W, Pan A, Fan X, Huang GF. J Phys D-Appl Phys, 2019, 53: 015502

    Google Scholar 

  15. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Nat Mater, 2011, 10: 456–461

    PubMed  CAS  Google Scholar 

  16. Click KA, Beauchamp DR, Huang Z, Chen W, Wu Y. J Am Chem Soc, 2016, 138: 1174–1179

    PubMed  CAS  Google Scholar 

  17. Ding Q, Meng F, English CR, Cabán-Acevedo M, Shearer MJ, Liang D, Daniel AS, Hamers RJ, Jin S. J Am Chem Soc, 2014, 136: 8504–8507

    PubMed  CAS  Google Scholar 

  18. Cox CR, Lee JZ, Nocera DG, Buonassisi T. Proc Natl Acad Sci USA, 2014, 111: 14057–14061

    PubMed  CAS  Google Scholar 

  19. Luo J, Tilley SD, Steier L, Schreier M, Mayer MT, Fan HJ, Grätzel M. Nano Lett, 2015, 15: 1395–1402

    PubMed  CAS  Google Scholar 

  20. Chae SY, Park SJ, Han SG, Jung H, Kim CW, Jeong C, Joo OS, Min BK, Hwang YJ. J Am Chem Soc, 2016, 138: 15673–15681

    PubMed  CAS  Google Scholar 

  21. Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Grätzel M. Energy Environ Sci, 2012, 5: 8673–8681

    CAS  Google Scholar 

  22. Zhang J, Li Y, Li J, Zhao Z, Liu X, Li Z, Han Y, Hu J, Chen A. Powder Tech, 2013, 246: 356–362

    CAS  Google Scholar 

  23. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. Nat Mater, 2009, 8: 76–80

    PubMed  CAS  Google Scholar 

  24. Zheng D, Cao XN, Wang X. Angew Chem Int Ed, 2016, 55: 11512–11516

    CAS  Google Scholar 

  25. Li B, Si Y, Fang Q, Shi Y, Huang WQ, Hu W, Pan A, Fan X, Huang GF. Nano-Micro Lett, 2020, 12: 52

    Google Scholar 

  26. Wang K, Yang LM, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew Chem Int Ed, 2017, 56: 14149–14153

    CAS  Google Scholar 

  27. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat Commun, 2015, 6: 8508

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang T, Hou Y, Dzhagan V, Liao Z, Chai G, Löffler M, Olianas D, Milani A, Xu S, Tommasini M, Zahn DRT, Zheng Z, Zschech E, Jordan R, Feng X. Nat Commun, 2018, 9: 1140

    PubMed  PubMed Central  Google Scholar 

  29. Sun H, Öner IH, Wang T, Zhang T, Selyshchev O, Neumann C, Fu Y, Liao Z, Xu S, Hou Y, Turchanin A, Zahn DRT, Zschech E, Weidinger IM, Zhang J, Feng X. Angew Chem Int Ed, 2019, 58: 10368–10374

    CAS  Google Scholar 

  30. Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Adv Mater, 2017, 29: 1702428

    Google Scholar 

  31. Sprick RS, Jiang JX, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI. J Am Chem Soc, 2015, 137: 3265–3270

    PubMed  CAS  Google Scholar 

  32. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem Commun, 2010, 46: 3256–3258

    CAS  Google Scholar 

  33. Shang H, Zuo Z, Yu L, Wang F, He F, Li Y. Adv Mater, 2018, 30: 1801459

    Google Scholar 

  34. Du H, Yang H, Huang C, He J, Liu H, Li Y. Nano Energy, 2016, 22: 615–622

    CAS  Google Scholar 

  35. Xiao J, Shi J, Liu H, Xu Y, Lv S, Luo Y, Li D, Meng Q, Li Y. Adv Energy Mater, 2015, 5: 1401943

    Google Scholar 

  36. Du H, Deng Z, Lü Z, Yin Y, Yu LL, Wu H, Chen Z, Zou Y, Wang Y, Liu H, Li Y. Synth Met, 2011, 161: 2055–2057

    CAS  Google Scholar 

  37. Lu X, Han Y, Lu T. Acta Phys-Chim Sin, 2018, 34: 1014–1028

  38. Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Angew Chem, 2019, 131: 14035–14041

    Google Scholar 

  39. Gao X, Li J, Du R, Zhou J, Huang MY, Liu R, Li J, Xie Z, Wu LZ, Liu Z, Zhang J. Adv Mater, 2017, 29: 1605308

    Google Scholar 

  40. Lv JX, Zhang ZM, Wang J, Lu XL, Zhang W, Lu TB. ACS Appl Mater Interfaces, 2019, 11: 2655–2661

    PubMed  CAS  Google Scholar 

  41. Zhou BX, Ding SS, Zhang BJ, Xu L, Chen RS, Luo L, Huang WQ, Xie Z, Pan A, Huang GF. Appl Catal B-Environ, 2019, 254: 321–328

    CAS  Google Scholar 

  42. Zhou J, Gao X, Liu R, Xie Z, Yang J, Zhang S, Zhang G, Liu H, Li Y, Zhang J, Liu Z. J Am Chem Soc, 2015, 137: 7596–7599

    PubMed  CAS  Google Scholar 

  43. Zhang T, Du Y, Kalbacova J, Schubel R, Rodriguez RD, Chen T, Zahn DRT, Jordan R. Polym Chem, 2015, 6: 8176–8183

    CAS  Google Scholar 

  44. Zhang T, Du Y, Müller F, Amin I, Jordan R. Polym Chem, 2015, 6: 2726–2733

    CAS  Google Scholar 

  45. Yang LL, Wang HJ, Wang J, Li Y, Zhang W, Lu TB. J Mater Chem A, 2019, 7: 13142–13148

    CAS  Google Scholar 

  46. Jang YH, Xin X, Byun M, Jang YJ, Lin Z, Kim DH. Nano Lett, 2012, 12: 479–485

    PubMed  CAS  Google Scholar 

  47. Lu YR, Yin PF, Mao J, Ning MJ, Zhou YZ, Dong CK, Ling T, Du XW. J Mater Chem A, 2015, 3: 18521–18527

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0700104), the National Natural Science Foundation of China (21790052, 21702146, 21805207) and 111 Project of China (D17003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhang or Tong-Bu Lu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, HJ., Zhang, C. et al. Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst. Sci. China Chem. 63, 1040–1045 (2020). https://doi.org/10.1007/s11426-020-9763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9763-9

Keywords

Navigation