Skip to main content
Log in

Molecular mechanism of SurA’s chaperoning function to outer membrane proteins revealed by purification-after-crosslinking single-molecule FRET

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

SurA is the major chaperone of outer membrane proteins (OMPs) in the periplasm. The molecular mechanism when SurA performs its chaperoning function is still unclear. Here, a purification-after-crosslinking (PAC) procedure was combined with single-molecule fluorescence resonance energy transfer (smFRET) to probe the conformations of SurA and OmpC in their complex. We found that SurA in the free state rearranges itself based on the crystal structure, except that the P2 domain moves towards the core domain with two major positions, forming a clamp-like conformation to accommodate OmpC. The obvious rearrangement of the P2 domain of SurA helps SurA to hold OmpC. OmpC attaches to SurA randomly and has the propensity to be near the middle part of the crevice. The noncollapsed and disordered conformations of OMPs provided by the OMPs·SurA complex are important to the subsequent delivery and folding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulz GE. Curr Opin Struct Biol, 2000, 10: 443–447

    PubMed  CAS  Google Scholar 

  2. Breyton C, Haase W, Rapoport TA, Kühlbrandt W, Collinson I. Nature, 2002, 418: 662–665

    PubMed  CAS  Google Scholar 

  3. Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. Nature, 2004, 427: 36–44

    PubMed  CAS  Google Scholar 

  4. Rapoport TA. Nature, 2007, 450: 663–669

    PubMed  CAS  Google Scholar 

  5. Driessen AJM, Nouwen N. Annu Rev Biochem, 2008, 77: 643–667

    PubMed  CAS  Google Scholar 

  6. Sklar JG, Wu T, Kahne D, Silhavy TJ. Genes Dev, 2007, 21: 2473–2484

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR. Nat Rev Microbiol, 2009, 7: 206–214

    PubMed  CAS  Google Scholar 

  8. Lyu ZX, Zhao XS. Biochem Soc Trans, 2015, 43: 133–138

    PubMed  CAS  Google Scholar 

  9. Noinaj N, Gumbart JC, Buchanan SK. Nat Rev Microbiol, 2017, 15: 197–204

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Lazar SW, Kolter R. J Bacteriol, 1996, 178: 1770–1773

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Rouvière PE, Gross CA. Genes Dev, 1996, 10: 3170–3182

    PubMed  Google Scholar 

  12. Behrens S, Maier R, de CH, Schmid FX, Gross CA. EMBO J, 2001, 20: 285–294

    PubMed  PubMed Central  CAS  Google Scholar 

  13. O’Neil PK, Rollauer SE, Noinaj N, Buchanan SK. Biochemistry, 2015, 54: 6303–6311

    PubMed  PubMed Central  Google Scholar 

  14. Bitto E, McKay DB. Structure, 2002, 10: 1489–1498

    PubMed  CAS  Google Scholar 

  15. Soltes GR, Schwalm J, Ricci DP, Silhavy TJ. J Bacteriol, 2016, 198: 921–929

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu CP, Zhou QM, Fan DJ, Zhou JM. Int J Biochem Cell Biol, 2010, 42: 890–901

    PubMed  Google Scholar 

  17. Bitto E, McKay DB. J Biol Chem, 2003, 278: 49316–49322

    PubMed  CAS  Google Scholar 

  18. Bitto E, McKay DB. FEBS Lett, 2004, 568: 94–98

    PubMed  CAS  Google Scholar 

  19. Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S. J Biol Chem, 2005, 280: 23540–23548

    PubMed  CAS  Google Scholar 

  20. Xu X, Wang S, Hu YX, McKay DB. J Mol Biol, 2007, 373: 367–381

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Wu S, Ge X, Lv Z, Zhi Z, Chang Z, Zhao XS. Biochem J, 2011, 438: 505–511

    PubMed  CAS  Google Scholar 

  22. Zhong M, Ferrell B, Lu W, Chai Q, Wei Y. J Bacteriol, 2013, 195: 1061–1067

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Li G, He C, Bu P, Bi H, Pan S, Sun R, Zhao XS. ACS Chem Biol, 2018, 13: 1082–1089

    PubMed  CAS  Google Scholar 

  24. Krainer G, Keller S, Schlierf M. Curr Opin Struct Biol, 2019, 58: 124–137

    PubMed  CAS  Google Scholar 

  25. He S, Yang C, Peng S, Chen C, Zhao XS. RSC Adv, 2019, 9: 14745–14749

    CAS  Google Scholar 

  26. Baslé A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. J Mol Biol, 2006, 362: 933–942

    PubMed  Google Scholar 

  27. Thoma J, Burmann BM, Hiller S, Müller DJ. Nat Struct Mol Biol, 2015, 22: 795–802

    PubMed  CAS  Google Scholar 

  28. Sinz A, Arlt C, Chorev D, Sharon M. Protein Sci, 2015, 24: 1193–1209

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. Nat Struct Mol Biol, 2016, 23: 192–196

    PubMed  CAS  Google Scholar 

  30. Wang Y, Wang R, Jin F, Liu Y, Yu J, Fu X, Chang Z. J Biol Chem, 2016, 291: 16720–16729

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Mas G, Hiller S. FEMS MicroBiol Lett, 2018, 365

    Google Scholar 

  32. Chai Q, Ferrell B, Zhong M, Zhang X, Ye C, Wei Y. Protein Eng Des Sel, 2014, 27: 111–116

    PubMed  CAS  Google Scholar 

  33. Struyvé M, Moons M, Tommassen J. J Mol Biol, 1991, 218: 141–148

    PubMed  Google Scholar 

  34. Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J. PLoS Biol, 2006, 4: e377

    PubMed  PubMed Central  Google Scholar 

  35. Dunker AK, Obradovic Z. Nat Biotechnol, 2001, 19: 805–806

    PubMed  CAS  Google Scholar 

  36. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang CH, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. J Mol Graphics Model, 2001, 19: 26–59

    CAS  Google Scholar 

  37. Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG. Proc Natl Acad Sci USA, 2013, 110: 4285–4290

    PubMed  CAS  Google Scholar 

  38. Bu PX, He CH, Zhao XS. Acta Phys-Chim Sin, 2019, 35: 546–554

    Google Scholar 

  39. Hagan CL, Westwood DB, Kahne D. Biochemistry, 2013, 52: 6108–6113

    PubMed  CAS  Google Scholar 

  40. Hagan CL, Kahne D. Biochemistry, 2011, 50: 7444–7446

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Mogensen JE, Otzen DE. Mol Microbiol, 2005, 57: 326–346

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21233002, 21521003) and the National Key Basic Research Special Foundation of China (2012CB917304). The measurements of CD spectra were performed at the Analytical Instrumentation Center of Peking University (PKUAIC). We acknowledge the assistance of Dr. Jiang Zhou from PKUAIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Sheng Zhao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9758_MOESM1_ESM.pdf

Molecular Mechanism of SurA’s Chaperoning Function to Outer Membrane Proteins Revealed by Purification-after-Crosslinking Single-Molecule FRET

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Pan, S., Li, G. et al. Molecular mechanism of SurA’s chaperoning function to outer membrane proteins revealed by purification-after-crosslinking single-molecule FRET. Sci. China Chem. 63, 1142–1152 (2020). https://doi.org/10.1007/s11426-020-9758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9758-2

Keywords

Navigation