Skip to main content
Log in

Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photocatalytic reduction of CO2 into value-added products is a promising strategy for mitigating environmental and energy problems simultaneously. Herein, we developed Au sheets with subtle grain boundaries on ultrathin Ni(OH)2 nanosheets as efficient photocatalysts for CO2 reduction. According to mechanistic studies, grain boundaries on the Au sheets served as electron trapping sites which enabled the optimization of electron-hole separation. Moreover, grain boundaries perturbed electron distribution, which assisted in stabilizing CO2δ and HCOO* intermediates. As a result, the unique hybrid structure achieved a high rate of 75.2 µmol g−1 h−1 for CO2 photoreduction. This work demonstrates the importance of defect engineering in designing active photocatalysts and also provides insight into development of related photo-energy conversion schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Angew Chem Int Ed, 2013, 52: 7372–7408

    Article  CAS  Google Scholar 

  2. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Chem Rev, 2014, 114: 9987–10043

    Article  CAS  Google Scholar 

  3. Xia T, Long R, Gao C, Xiong Y. Nanoscale, 2019, 11: 11064–11070

    Article  CAS  Google Scholar 

  4. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, Pan Y, Ju H, Zhu J, Xie Y. Nat Energy, 2019, 4: 690–699

    Article  CAS  Google Scholar 

  5. Zhao B, Huang Y, Liu D, Yu Y, Zhang B. Sci China Chem, 2020, 63: 28–34

    Article  CAS  Google Scholar 

  6. Wang S, Xu M, Peng T, Zhang C, Li T, Hussain I, Wang J, Tan B. Nat Commun, 2019, 10: 676

    Article  CAS  Google Scholar 

  7. Zhao Y, Chen G, Bian T, Zhou C, Waterhouse GIN, Wu LZ, Tung CH, Smith LJ, O’Hare D, Zhang T. Adv Mater, 2015, 27: 7824–7831

    Article  CAS  Google Scholar 

  8. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Angew Chem Int Ed, 2016, 55: 14310–14314

    Article  CAS  Google Scholar 

  9. Xie S, Zhang Q, Liu G, Wang Y. Chem Commun, 2016, 52: 35–59

    Article  CAS  Google Scholar 

  10. Wang S, Guan BY, Lou XWD. J Am Chem Soc, 2018, 140: 5037–5040

    Article  CAS  Google Scholar 

  11. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. Adv Mater, 2018, 30: 1706108

    Article  Google Scholar 

  12. Zheng T, Sang W, He Z, Wei Q, Chen B, Li H, Cao C, Huang R, Yan X, Pan B, Zhou S, Zeng J. Nano Lett, 2017, 17: 7968–7973

    Article  CAS  Google Scholar 

  13. Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J Am Chem Soc, 2017, 139: 6538–6541

    Article  CAS  Google Scholar 

  14. Kong Q, Kim D, Liu C, Yu Y, Su Y, Li Y, Yang P. Nano Lett, 2016, 16: 5675–5680

    Article  CAS  Google Scholar 

  15. Ran J, Jaroniec M, Qiao SZ. Adv Mater, 2018, 30: 1704649

    Article  Google Scholar 

  16. Liu G, Li P, Zhao G, Wang X, Kong J, Liu H, Zhang H, Chang K, Meng X, Kako T, Ye J. J Am Chem Soc, 2016, 138: 9128–9136

    Article  CAS  Google Scholar 

  17. Choi KM, Kim D, Rungtaweevoranit B, Trickett CA, Barmanbek JTD, Alshammari AS, Yang P, Yaghi OM. J Am Chem Soc, 2017, 139: 356–362

    Article  CAS  Google Scholar 

  18. Li X, Yu J, Jaroniec M, Chen X. Chem Rev, 2019, 119: 3962–4179

    Article  CAS  Google Scholar 

  19. Mariano RG, McKelvey K, White HS, Kanan MW. Science, 2017, 358: 1187–1192

    Article  CAS  Google Scholar 

  20. Kim KS, Kim WJ, Lim HK, Lee EK, Kim H. ACS Catal, 2016, 6: 4443–4448

    Article  CAS  Google Scholar 

  21. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew Chem Int Ed, 2012, 51: 8008–8011

    Article  CAS  Google Scholar 

  22. Ida S, Shiga D, Koinuma M, Matsumoto Y. J Am Chem Soc, 2008, 130: 14038–14039

    Article  CAS  Google Scholar 

  23. Lu K. Nat Rev Mater, 2016, 1: 16019

    Article  CAS  Google Scholar 

  24. Yang Y, Liu G, Irvine JTS, Cheng HM. Adv Mater, 2016, 28: 5850–5856

    Article  CAS  Google Scholar 

  25. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C. Nat Commun, 2013, 4: 1432

    Article  Google Scholar 

  26. Tu W, Zhou Y, Liu Q, Tian Z, Gao J, Chen X, Zhang H, Liu J, Zou Z. Adv Funct Mater, 2012, 22: 1215–1221

    Article  CAS  Google Scholar 

  27. Yu J, Tian Y, Zhou F, Zhang M, Chen R, Liu Q, Liu J, Xu CY, Wang J. J Mater Chem A, 2018, 6: 17353–17360

    Article  CAS  Google Scholar 

  28. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA. Science, 2014, 345: 546–550

    Article  CAS  Google Scholar 

  29. Wang G, Luo R, Yang C, Song J, Xiong C, Tian H, Zhao ZJ, Mu R, Gong J. Sci China Chem, 2019, 62: 1710–1719

    Article  CAS  Google Scholar 

  30. Kecskés T, Raskó J, Kiss J. Appl Catal A Gen, 2004, 268: 9–16

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (21925204), the National Natural Science Foundation of China (U19A2015, 21673214, U1732272), the National Key Research and Development Program of China (2019YFA-0405600), the Key Research Program of Frontier Sciences of the CAS (QYZDB-SSW-SLH017), the Fundamental Research Funds for the Central Universities, the USTC Research Funds of the Double First-Class Initiative (YD2340002002), the Taishan Scholar Program of Shandong Province of China (tsqn201909122), and the China Postdoctoral Science Foundation (2019TQ0300). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Bao or Jie Zeng.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, T., Zhang, L. et al. Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction. Sci. China Chem. 63, 1705–1710 (2020). https://doi.org/10.1007/s11426-020-9757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9757-5

Keywords

Navigation