Abstract
Tailoring the nanostructure and composition of transition metal nitrides is highly important for their use as potent low-cost electrocatalysts. Cobalt nitride (CoN) exhibits strong catalytic activity for oxygen evolution reaction (OER). However, its poor catalytic efficiency for oxygen reduction reaction (ORR) hinders its application in rechargeable zinc-air batteries (ZABs) as the air cathode. In this work, we deploy the effective strategy of Mn doping to improve both OER and ORR activity of CoN nanowires as the cathode material for ZAB. Theoretical calculation predicts that moderate Mn doping in cobalt nitride results in a downshift of the d-band center and reduces the adsorption energy of reaction intermediates. With ∼10 at% Mn dopants, stronger catalysis activities for both OER and ORR are achieved compared to pure CoN nanowires. Subsequently, both aqueous and flexible quasi-solid-state ZABs are constructed using the Mn-doped CoN nanowires array as additive-free air cathode. Both types of devices present large open circuit potential, high power density and long-cycle stability. This work pushes forward the progress in developing cost-effective ZABs.
This is a preview of subscription content,
to check access.References
Fu J, Liang R, Liu G, Yu A, Bai Z, Yang L, Chen Z. Adv Mater, 2019, 31: 1805230
Yang D, Zhang L, Yan X, Yao X. Small Methods, 2017, 1: 1700209
Liu X, Jiang L, Zhu Z, Chen S, Dou Y, Liu P, Wang Y, Yin H, Tang Z, Zhao H. Mater Today Energy, 2019, 1: 24–29
Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y. Small, 2018, 14: 1801929
Dionigi F, Strasser P. Adv Energy Mater, 2016, 6: 1600621
Wang HF, Tang C, Zhang Q. Adv Funct Mater, 2018, 28: 1803329
Yang D, Tan H, Rui X, Yu Y. Electrochem Energ Rev, 2019, 1: 395–427
Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Nat Commun, 2013, 4: 1805
Wang K, Liao C, Wang W, Xiao Y, Liu X, Zhao S. Mater Today Energy, 2019, 14: 100340
Peng Z, Jia D, Al-Enizi AM, Elzatahry AA, Zheng G. Adv Energy Mater, 2015, 5: 1402031
Deng S, Shen Y, Xie D, Lu Y, Yu X, Yang L, Wang X, Xia X, Tu J. J Energy Chem, 2019, 1: 61–67
Qin Y, Yuan J, Zhang L, Zhao B, Liu Y, Kong Y, Cao J, Chu F, Tao Y, Liu M. Small, 2016, 1: 2549–2553
Liu L, Wang Y, Yan F, Zhu C, Geng B, Chen Y, Chou S. Small Methods, 2020, 4: 1900571
Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y. Adv Mater, 2018, 30: 1704609
Hao P, Zhu W, Li L, Xin Y, Xie J, Lei F, Tian J, Tang B. Chem Commun, 2019, 1: 10138–10141
Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J. Adv Mater, 2017, 29: 1704117
Ma TY, Dai S, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 1: 13925–13931
Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, Somsen C, Muhler M, Schuhmann W. Adv Energy Mater, 2016, 6: 1502313
Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S. Energy Environ Sci, 2017, 1: 2563–2569
Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ. Angew Chem Int Ed, 2016, 1: 8670–8674
Xu K, Cheng H, Liu L, Lv H, Wu X, Wu C, Xie Y. Nano Lett, 2016, 1: 578–583
Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M. Angew Chem Int Ed, 2016, 1: 4087–4091
Ahn SH, Manthiram A. Small, 2017, 13: 1702068
Ye Z, Li T, Ma G, Dong Y, Zhou X. Adv Funct Mater, 2017, 27: 1704083
Ramirez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S. J Phys Chem C, 2014, 1: 14073–14081
Yang Y, Wang Y, Xiong Y, Huang X, Shen L, Huang R, Wang H, Pastore JP, Yu SH, Xiao L, Brock JD, Zhuang L, Abruna HD. J Am Chem Soc, 2019, 1: 1463–1466
Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y. Adv Mater, 2019, 31: 1808281
Fu G, Wang J, Chen Y, Liu Y, Tang Y, Goodenough JB, Lee JM. Adv Energy Mater, 2018, 8: 1802263
Li YJ, Cui L, Da PF, Qiu KW, Qin WJ, Hu WB, Du XW, Davey K, Ling T, Qiao SZ. Adv Mater, 2018, 30: 1804653
Qiu HJ, Du P, Hu K, Gao J, Li H, Liu P, Ina T, Ohara K, Ito Y, Chen M. Adv Mater, 2019, 31: 1900843
Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Angew Chem Int Ed, 2018, 1: 5076–5080
Meng C, Ling T, Ma TY, Wang H, Hu Z, Zhou Y, Mao J, Du XW, Jaroniec M, Qiao SZ. Adv Mater, 2017, 29: 1604607
Ouyang B, Zhang Y, Xia X, Rawat RS, Fan HJ. Mater Today Nano, 2018, 1: 28–47
Zhang Y, Rawat RS, Fan HJ. Small Methods, 2017, 1: 1700164
Walter C, Menezes PW, Orthmann S, Schuch J, Connor P, Kaiser B, Lerch M, Driess M. Angew Chem Int Ed, 2018, 1: 698–702
Ouyang B, Zhang Y, Wang Y, Zhang Z, Fan HJ, Rawat RS. J Mater Chem A, 2016, 1: 17801–17808
Xu K, Ding H, Lv H, Chen P, Lu X, Cheng H, Zhou T, Liu S, Wu X, Wu C, Xie Y. Adv Mater, 2016, 1: 3326–3332
Cui X, Ren P, Deng D, Deng J, Bao X. Energy Environ Sci, 2016, 1: 123–129
Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, Alshareef HN. Nano Lett, 2016, 1: 7718–7725
Zhu L, Zheng D, Wang Z, Zheng X, Fang P, Zhu J, Yu M, Tong Y, Lu X. Adv Mater, 2018, 30: 1805268
Ji D, Fan L, Li L, Peng S, Yu D, Song J, Ramakrishna S, Guo S. Adv Mater, 2019, 31: 1808267
Ma L, Chen S, Pei Z, Li H, Wang Z, Liu Z, Tang Z, Zapien JA, Zhi C. ACS Nano, 2018, 1: 8597–8605
Zhang X, Wu S, Deng S, Wu W, Zeng Y, Xia X, Pan G, Tong Y, Lu X. Small Methods, 2019, 3: 1900525
Liu Q, Chang Z, Li Z, Zhang X. Small Methods, 2018, 2: 1700231
Acknowledgements
This work was supported by the Singapore MOE AcRF Tier 2 Grant (MOE2017-T2-1-073), AME Individual Research Grant (A1983c0026), and Agency for Science, Technology, and Research (A*STAR).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Zhang, Y., Ouyang, B., Long, G. et al. Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci. China Chem. 63, 890–896 (2020). https://doi.org/10.1007/s11426-020-9739-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-020-9739-2