Skip to main content
Log in

Cleavable bimetallic-organic polymers for ROS mediated cascaded cancer therapy under the guidance of MRI through tumor hypoxia relief strategy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Despite recent advances in tumor treatment, reactive oxygen species (ROS)-mediated therapy, such as photodynamic therapy (PDT) and chemical dynamic therapy (CDT), remains challenging mainly due to hypoxia in tumor microenviroment. Relieving the hypoxia of tumor tissue has been considered as an attractive strategy for enhancing efficacy of ROS-based cancer treatment. Herein, one cascaded platform was developed to overcome tumor hypoxia and synergistically enhance the effect of ROSmediated therapy. This platform is based on cleavable bimetallic metal organic polymers (DOX@Fe/Mn-THPPTK-PEG). As an efficient Fenton-like material, it could not only produce cytotoxic •OH by catalyzing the decomposition of intracellular H2O2, but also generate O2 to alleviate tumor hypoxia. In addition, the DOX-loaded metal organic polymers (MOPs could be disrupted after being exposed to laser irradiation or/and treated with H2O2, and then release the DOX for chemotherapy. Overall, 3 therapies (hypoxia-relieved PDT, photo-enhanced CDT, and ROS-mediated chemotherapy) could be achieved simultaneously by such a smart platform. Furthermore, T1-weighted MRI imaging ability of the MOPs could be greatly improved under H2O2 treatment. Therefore, total four robust functions were realized in a simple platform. These findings demonstrate great clinical potentials of the MOPs for cancer theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anglada JM, Martins-Costa M, Francisco JS, Ruiz-López MF. Acc Chem Res, 2015, 48: 575–583

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Zhen W, Jin L, Zhang S, Sun G, Zhang T, Xu X, Song S, Wang Y, Liu J, Zhang H. ACS Nano, 2018, 12: 4886–4893

    Article  CAS  PubMed  Google Scholar 

  3. Xu Q, He C, Xiao C, Chen X. Macromol Biosci, 2016, 16: 635–646

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Wang D, Zhang S, Cheng Y, Yang F, Xing Y, Xu T, Dong H, Zhang X. ACS Nano, 2019, 13: 4267–4277

    Article  CAS  PubMed  Google Scholar 

  5. Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu K. Angew Chem Int Ed, 2019, 58: 5920–5924

    Article  CAS  Google Scholar 

  6. Guo S, Han M, Chen R, Zhuang Y, Zou L, Liu S, Huang W, Zhao Q. Sci China Chem, 2019, 62: 1639–1648

    Article  CAS  Google Scholar 

  7. Zhu ZH, Hu Q, Pan HL, Zhang Y, Xu H, Kurmoo M, Huang J, Zeng MH. Sci China Chem, 2019, 62: 719–726

    Article  CAS  Google Scholar 

  8. Kim J, Cho HR, Jeon H, Kim D, Song C, Lee N, Choi SH, Hyeon T. J Am Chem Soc, 2017, 139: 10992–10995

    Article  CAS  PubMed  Google Scholar 

  9. Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Nat Commun, 2017, 8: 902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ding B, Shao S, Jiang F, Dang P, Sun C, Huang S, Ma P’, Jin D, Kheraif AAA, Lin J. Chem Mater, 2019, 31: 2651–2660

    Article  CAS  Google Scholar 

  11. Yin S, Song G, Yang Y, Zhao Y, Wang P, Zhu L, Yin X, Zhang X. Adv Funct Mater, 2019, 29: 1901417

    Article  CAS  Google Scholar 

  12. Song X, Xu J, Liang C, Chao Y, Jin Q, Wang C, Chen M, Liu Z. Nano Lett, 2018, 18: 6360–6368

    Article  CAS  PubMed  Google Scholar 

  13. Phua SZF, Yang G, Lim WQ, Verma A, Chen H, Thanabalu T, Zhao Y. ACS Nano, 2019, 13: 4742–4751

    Article  CAS  PubMed  Google Scholar 

  14. Liu LH, Zhang YH, Qiu WX, Zhang L, Gao F, Li B, Xu L, Fan JX, Li ZH, Zhang XZ. Small, 2017, 13: 1701621

    Article  CAS  Google Scholar 

  15. Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, Yuan A, Wu J, Hu Y. Nat Commun, 2015, 6: 8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu M, Xu X, Cai Y, Zou L, Shuai X. Biomaterials, 2018, 175: 61–71

    Article  CAS  PubMed  Google Scholar 

  17. Tang W, Zhen Z, Wang M, Wang H, Chuang YJ, Zhang W, Wang GD, Todd T, Cowger T, Chen H, Liu L, Li Z, Xie J. Adv Funct Mater, 2016, 26: 1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian H, Luo Z, Liu L, Zheng M, Chen Z, Ma A, Liang R, Han Z, Lu C, Cai L. Adv Funct Mater, 2017, 27: 1703197

    Article  CAS  Google Scholar 

  19. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. J Am Chem Soc, 2019, 141: 849–857

    Article  CAS  PubMed  Google Scholar 

  20. Tang Z, Liu Y, He M, Bu W. Angew Chem Int Ed, 2019, 58: 946–956

    Article  CAS  Google Scholar 

  21. Zhou Z, Song J, Tian R, Yang Z, Yu G, Lin L, Zhang G, Fan W, Zhang F, Niu G, Nie L, Chen X. Angew Chem Int Ed, 2017, 56: 6492–6496

    Article  CAS  Google Scholar 

  22. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W. J Am Chem Soc, 2018, 140: 5670–5673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Y, Lv T, Ma Y, Xu J, Zhang Y, Hou Y, Huang Z, Ding Y. Nano Lett, 2019, 19: 2731–2738

    Article  CAS  PubMed  Google Scholar 

  24. Hu F, Mao D, Kenry D, Wang Y, Wu W, Zhao D, Kong D, Liu B. Adv Funct Mater, 2018, 28: 1707519

    Article  CAS  Google Scholar 

  25. Tao D, Feng L, Chao Y, Liang C, Song X, Wang H, Yang K, Liu Z. Adv Funct Mater, 2018, 28: 1804901

    Article  CAS  Google Scholar 

  26. Zheng X, Wang L, Liu M, Lei P, Liu F, Xie Z. Chem Mater, 2018, 30: 6867–6876

    Article  CAS  Google Scholar 

  27. Zhou J, Li M, Hou Y, Luo Z, Chen Q, Cao H, Huo R, Xue C, Sutrisno L, Hao L, Cao Y, Ran H, Lu L, Li K, Cai K. ACS Nano, 2018, 12: 2858–2872

    Article  CAS  PubMed  Google Scholar 

  28. Lan G, Ni K, Lin W. Coord Chem Rev, 2019, 379: 65–81

    Article  CAS  PubMed  Google Scholar 

  29. Yuan Y, Liu J, Liu B. Angew Chem, 2014, 126: 7291–7296

    Article  Google Scholar 

  30. Liu K, Xing R, Zou Q, Ma G, Möhwald H, Yan X. Angew Chem Int Ed, 2016, 55: 3036–3039

    Article  CAS  Google Scholar 

  31. Li J, Wang A, Zhao L, Dong Q, Wang M, Xu H, Yan X, Bai S. ACS Appl Mater Interfaces, 2018, 10: 28420–28427

    Article  CAS  PubMed  Google Scholar 

  32. Lunt SJ, Chaudary N, Hill RP. Curr Mol Med, 2009, 26: 19–34

    Google Scholar 

  33. Yuri K, Qun L, Peter M G, Zhong Y. Curr Mol Med, 2009, 9: 425–434

    Article  Google Scholar 

  34. Sahoo B, Sahu SK, Nayak S, Dhara D, Pramanik P. Catal Sci Technol, 2012, 2: 1367–1374

    Article  CAS  Google Scholar 

  35. Chen L, Meng D, Wu X, Wang A, Wang J, Wang Y, Yu M. J Phys Chem C, 2016, 120: 18548–18559

    Article  CAS  Google Scholar 

  36. He H, Zhou J, Liu Y, Liu S, Xie Z, Yu M, Wang Y, Shuai X. ACS Appl Mater Interfaces, 2018, 10: 7413–7421

    Article  CAS  PubMed  Google Scholar 

  37. An HW, Qiao SL, Hou CY, Lin YX, Li LL, Xie HY, Wang Y, Wang L, Wang H. Chem Commun, 2015, 51: 13488–13491

    Article  CAS  Google Scholar 

  38. Lin W, Li Y, Zhang W, Liu S, Xie Z, Jing X. ACS Appl Mater Interfaces, 2016, 8: 24426–24432

    Article  CAS  PubMed  Google Scholar 

  39. Maeda H, Bharate GY, Daruwalla J. Eur J Pharm Biopharm, 2009, 71: 409–419

    Article  CAS  PubMed  Google Scholar 

  40. Fang J, Nakamura H, Maeda H. Adv Drug Deliver Rev, 2011, 63: 136–151

    Article  CAS  Google Scholar 

  41. Torchilin V. Adv Drug Deliver Rev, 2011, 63: 131–135

    Article  CAS  Google Scholar 

  42. Huang X, Gu R, Li J, Yang N, Cheng Z, Si W, Chen P, Huang W, Dong X. Sci China Chem, 2020, 63: 55–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51933011, 31971296, 21805314), the National Basic Research Program of China (2015CB755500) and the Natural Science Foundation of the Guangdong Province (2014A030312018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintao Shuai.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9735_MOESM1_ESM.docx

Cleavable bimetallic-organic polymers for ROS mediated cascaded cancer therapy under the guidance of MRI through tumor hypoxia relief strategy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Du, L., Tan, M. et al. Cleavable bimetallic-organic polymers for ROS mediated cascaded cancer therapy under the guidance of MRI through tumor hypoxia relief strategy. Sci. China Chem. 63, 936–945 (2020). https://doi.org/10.1007/s11426-020-9735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9735-2

Keywords

Navigation