Skip to main content
Log in

Monomer-dependent synthesis of secondary amine-linked triazine-based two-dimensional polymers nanosheets

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Expanding the structural diversity of crystalline two-dimensional polymers (2DPs) is highly desired but remains a considerable challenge. Herein we report the first synthesis of novel crystalline secondary amine-linked triazine-based 2DPs (SAT-2DPs) by using benzidine or 4, 4″-diamino-p-terphenyl and cyanuric chloride under solvothermal conditions. We find the structures of diamine-based monomers play a crucial role in deciding whether the synthesized material is crystalline 2DPs nanosheets or amorphous nanoparticles, which is unexpected and provides an important understanding of the 2D polymerization mechanism. The obtained SAT-2DPs not only show a lateral size of micrometers and an ultrathin thickness of a few nanometers, but also demonstrate high crystallinity with a unique ABC stacking configuration, excellent solvent dispersibility and superior thermal stability. In addition, the resultant SAT-2DPs are used to guide uniform lithium-ion deposition due to their abundant nitrogen atoms and ordered open channels. The assembled asymmetric coin cells (Li|Cu) with SAT-2DPs realize the average coulombic efficient up to 99.3% during discharge-charge cycles. This work provides valuable insights into the synthesis of new 2DPs for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staudinger H. Ber dtsch Chem Ges A/B, 1920, 53: 1073–1085

    Article  Google Scholar 

  2. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem Commun, 2010, 46: 3256–3258

    Article  CAS  Google Scholar 

  3. Li Y, Xu L, Liu H, Li Y. Chem Soc Rev, 2014, 43: 2572–2586

    Article  CAS  Google Scholar 

  4. Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, Kye JI, Lee C, Park HG. Science, 2014, 344: 289–292

    Article  CAS  Google Scholar 

  5. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés I Xamena FX, Gascon J. Nat Mater, 2015, 14: 48–55

    Article  CAS  Google Scholar 

  6. Bunck DN, Dichtel WR. J Am Chem Soc, 2013, 135: 14952–14955

    Article  CAS  Google Scholar 

  7. Payamyar P, King BT, Öttinger HC, Schlüter AD. Chem Commun, 2016, 52: 18–34

    Article  CAS  Google Scholar 

  8. Sakamoto J, van Heijst J, Lukin O, Schlüter AD. Angew Chem Int Ed, 2009, 48: 1030–1069

    Article  CAS  Google Scholar 

  9. Yu F, Liu W, Li B, Tian D, Zuo JL, Zhang Q. Angew Chem Int Ed, 2019, 45: 16101–16104

    Article  Google Scholar 

  10. Hao Q, Li ZJ, Lu C, Sun B, Zhong YW, Wan LJ, Wang D. J Am Chem Soc, 2019, 50: 19831–19838

    Article  Google Scholar 

  11. Liu W, Li X, Wang C, Pan H, Liu W, Wang K, Zeng Q, Wang R, Jiang J. J Am Chem Soc, 2019, 43: 17431–17440

    Article  Google Scholar 

  12. Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L. Nat Chem, 2012, 4: 215–220

    Article  CAS  Google Scholar 

  13. Berlanga I, Ruiz-González ML, González-Calbet JM, Fierro JLG, Mas-Ballesté R, Zamora F. Small, 2011, 7: 1207–1211

    Article  CAS  Google Scholar 

  14. Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM, Chaudhary M, Babarao R, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 17853–17861

    Article  CAS  Google Scholar 

  15. Khayum MA, Kandambeth S, Mitra S, Nair SB, Das A, Nagane SS, Mukherjee R, Banerjee R. Angew Chem Int Ed, 2016, 55: 15604–15608

    Article  CAS  Google Scholar 

  16. Liu W, Luo X, Bao Y, Liu YP, Ning GH, Abdelwahab I, Li L, Nai CT, Hu ZG, Zhao D, Liu B, Quek SY, Loh KP. Nat Chem, 2017, 9: 563–570

    Article  CAS  Google Scholar 

  17. Kaindl T, Oelke J, Pasc A, Kaufmann S, Konovalov OV, Funari SS, Engel U, Wixforth A, Tanaka M. J Phys-Condens Matter, 2010, 22: 285102

    Article  CAS  Google Scholar 

  18. Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J Am Chem Soc, 2017, 139: 3145–3152

    Article  CAS  Google Scholar 

  19. Murray DJ, Patterson DD, Payamyar P, Bhola R, Song W, Lackinger M, Schlüter AD, King BT. J Am Chem Soc, 2015, 137: 3450–3453

    Article  CAS  Google Scholar 

  20. Sahabudeen H, Qi H, Glatz BA, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U, Fery A, Zheng Z, Feng X. Nat Commun, 2016, 7: 13461

    Article  CAS  Google Scholar 

  21. Shao F, Dai W, Zhang Y, Zhang W, Schlüter AD, Zenobi R. ACS Nano, 2018, 12: 5021–5029

    Article  CAS  Google Scholar 

  22. Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y. J Am Chem Soc, 2017, 139: 11666–11669

    Article  CAS  Google Scholar 

  23. Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. Adv Mater, 2018, 30: 1705401

    Article  Google Scholar 

  24. Yang Y, Bu F, Liu J, Shakir I, Xu Y. Chem Commun, 2017, 53: 7481–7484

    Article  CAS  Google Scholar 

  25. Duan H, Lyu P, Liu J, Zhao Y, Xu Y. ACS Nano, 2019, 13: 2473–2480

    CAS  PubMed  Google Scholar 

  26. Puthiaraj P, Lee YR, Zhang S, Ahn WS. J Mater Chem A, 2016, 4: 16288–16311

    Article  CAS  Google Scholar 

  27. Patel HA, Karadas F, Byun J, Park J, Deniz E, Canlier A, Jung Y, Atilhan M, Yavuz CT. Adv Funct Mater, 2013, 23: 2270–2276

    Article  CAS  Google Scholar 

  28. Sakai Y, Saito S, Cohen ML. Phys Rev B, 2014, 11: 115424

    Article  Google Scholar 

  29. Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M. Science, 2016, 353: 1413–1416

    Article  CAS  Google Scholar 

  30. Pashaee F, Sharifi F, Fanchini G, Lagugné-Labarthet F. Phys Chem Chem Phys, 2015, 17: 21315–21322

    Article  CAS  Google Scholar 

  31. Niu C, Liu J, Chen G, Liu C, Qian T, Zhang J, Cao B, Shang W, Chen Y, Han J, Du J, Chen Y. J Power Sources, 2019, 417: 70–75

    Article  CAS  Google Scholar 

  32. Niu C, Zhang M, Chen G, Cao B, Shi J, Du J, Chen Y. Electrochim Acta, 2018, 283: 349–356

    Article  CAS  Google Scholar 

  33. Zhang K, Zhang B, Weng M, Zheng J, Li S, Pan F. Phys Chem Chem Phys, 2019, 21: 9883–9888

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the National Natural Science Foundation of China (51873039, 51673042), and the Young Elite Scientist Sponsorship Program by CAST (2017QNRC001). We extend our sincere appreciation to King Saud University for funding this work through Researchers Supporting Project number RSP-2019/49.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Imran Shakir, Chengbing Yu or Yuxi Xu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Niu, C., Aly Aboud, M.F. et al. Monomer-dependent synthesis of secondary amine-linked triazine-based two-dimensional polymers nanosheets. Sci. China Chem. 63, 966–972 (2020). https://doi.org/10.1007/s11426-020-9720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9720-1

Keywords

Navigation