Skip to main content
Log in

A facile and sensitive colorimetric detection for RNase A activity based on target regulated protection effect on plasmonic gold nanoparticles aggregation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, a facile and sensitive colorimetric detection method was firstly reported for RNase A activity detection based on target regulated protection effect of chimeric DNA probe on the salt-induced aggregation of plasmonic gold nanoparticles. Compared with previous works of RNase A activity detection, this colorimetric assay integrated the advantages of sensitive, low cost, facile operation, rapid response and low biological toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park C, Schultz LW, Raines RT. Biochemistry, 2001, 40: 4949–4956

    Article  CAS  PubMed  Google Scholar 

  2. Raines RT. Chem Rev, 1998, 98: 1045–1066

    Article  CAS  PubMed  Google Scholar 

  3. Samanta A, Leonidas DD, Dasgupta S, Pathak T, Zographos SE, Oikonomakos NG. J Med Chem, 2009, 52: 932–942

    Article  CAS  PubMed  Google Scholar 

  4. Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Angew Chem Int Ed, 2014, 53: 2893–2898

    Article  CAS  Google Scholar 

  5. Zhang P, He D, Klein PM, Liu X, Röder R, Döblinger M, Wagner E. Adv Funct Mater, 2015, 25: 6627–6636

    Article  CAS  Google Scholar 

  6. Liu X, Zhang P, He D, Rödl W, Preiß T, Rädler JO, Wagner E, Lächelt U. Biomacromolecules, 2016, 17: 173–182

    Article  CAS  PubMed  Google Scholar 

  7. Kim E, Zwi-Dantsis L, Reznikov N, Hansel CS, Agarwal S, Stevens MM. Adv Mater, 2017, 29: 1701086

    Article  CAS  Google Scholar 

  8. Hu S, Chen X, Lei C, Tang R, Kang W, Deng H, Huang Y, Nie Z, Yao S. Chem Commun, 2018, 54: 7806–7809

    Article  CAS  Google Scholar 

  9. Zhao S, Duan F, Liu S, Wu T, Shang Y, Tian R, Liu J, Wang ZG, Jiang Q, Ding B. ACS Appl Mater Interfaces, 2019, 11: 11112–11118

    Article  CAS  PubMed  Google Scholar 

  10. Liu C, Shen W, Li B, Li T, Chang H, Cheng Y. Chem Mater, 2019, 31: 1956–1965

    Article  CAS  Google Scholar 

  11. Choi JW, Vasamsetti BMK, Kim KW, Seo SH, Lee DH, Chang SI, Choo J, Kim HY. Analyst, 2017, 142: 2610–2616

    Article  CAS  PubMed  Google Scholar 

  12. Tripathy DR, Dinda AK, Dasgupta S. Anal Biochem, 2013, 437: 126–129

    Article  CAS  PubMed  Google Scholar 

  13. Tong C, Zhao C, Liu B, Li B, Ai Z, Fan J, Wang W. Anal Chem, 2018, 90: 2655–2661

    Article  CAS  PubMed  Google Scholar 

  14. Du J, Yang H, Huang N, Dong Y, Gao Q, Yang W, Liu B, Yang C. Sens Actuat B-Chem, 2018, 259: 282–288

    Article  CAS  Google Scholar 

  15. Ye Y, Wen W, Xiang Y, Qi X, LaBelle J, Chen J, Wang J. Electroanalysis, 2008, 20: 919–922

    Article  CAS  Google Scholar 

  16. Sato S, Takenaka S. Electroanalysis, 2013, 25: 1652–1658

    Article  CAS  Google Scholar 

  17. Ni J, Lin H, Yang W, Liao Y, Wang Q, Luo F, Guo L, Qiu B, Lin Z. Anal Chem, 2019, 91: 14751–14756

    Article  CAS  PubMed  Google Scholar 

  18. Polavarapu L, Pérez-Juste J, Xu QH, Liz-Marzán LM. J Mater Chem C, 2014, 2: 7460–7476

    Article  CAS  Google Scholar 

  19. Ding Y, Liu Y, Chen Y, Huang Y, Gao Y. Anal Chem, 2019, 91: 3508–3515

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Li S, Liu Q, Chen Z. Anal Chem, 2019, 91: 6315–6320

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Li Y, Ma K, Wang Z. Sci China Chem, 2018, 61: 643–655

    Article  CAS  Google Scholar 

  22. Xie T, Jing C, Long YT. Analyst, 2017, 142: 409–420

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y, Wu X, Tian T, Zhu Z, Lin H, Yang C. Sci China Chem, 2017, 60: 293–298

    Article  CAS  Google Scholar 

  24. Wang Q, Zou L, Yang X, Liu X, Nie W, Zheng Y, Cheng Q, Wang K. Biosens Bioelectron, 2019, 135: 129–136

    Article  CAS  PubMed  Google Scholar 

  25. Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL. Chem Rev, 2019, 119: 664–699

    Article  CAS  PubMed  Google Scholar 

  26. Zhou W, Gao X, Liu D, Chen X. Chem Rev, 2015, 115: 10575–10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su X, Kanjanawarut R. ACS Nano, 2009, 3: 2751–2759

    Article  CAS  PubMed  Google Scholar 

  28. Koo KM, Sina AAI, Carrascosa LG, Shiddiky MJA, Trau M. Anal Methods, 2015, 7: 7042–7054

    Article  CAS  Google Scholar 

  29. Li H, Rothberg L. Proc Natl Acad Sci USA, 2004, 101: 14036–14039

    Article  CAS  PubMed  Google Scholar 

  30. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ. J Am Chem Soc, 2003, 125: 9014–9015

    Article  CAS  PubMed  Google Scholar 

  31. Ostblom M, Liedberg B, Demers LM, Mirkin CA. J Phys Chem B, 2005, 109: 15150–15160

    Article  PubMed  CAS  Google Scholar 

  32. Lee JH, Wang Z, Liu J, Lu Y. J Am Chem Soc, 2008, 130: 14217–14226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang CC, Chen CP, Chen CY, Lin CW. Chem Commun, 2016, 52: 4167–4170

    Article  CAS  Google Scholar 

  34. Huang Z, Chen J, Luo Z, Wang X, Duan Y. Anal Chem, 2019, 91: 4806–4813

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Xi H, Kong C, Liu Q, Chen Z. Anal Chem, 2018, 90: 11723–11727

    Article  CAS  PubMed  Google Scholar 

  36. Augspurger EE, Rana M, Yigit MV. ACS Sens, 2018, 3: 878–902

    Article  CAS  PubMed  Google Scholar 

  37. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. J Am Chem Soc, 1998, 120: 1959–1964

    Article  CAS  Google Scholar 

  38. Liu J, Lu Y. Nat Protoc, 2006, 1: 246–252

    Article  CAS  PubMed  Google Scholar 

  39. Haiss W, Thanh NTK, Aveyard J, Fernig DG. Anal Chem, 2007, 79: 4215–4221

    Article  CAS  PubMed  Google Scholar 

  40. He F, Liu H, Guo X, Yin BC, Ye BC. Anal Chem, 2017, 89: 12968–12975

    Article  CAS  PubMed  Google Scholar 

  41. Pan M, Xu Z, Jiang Q, Feng J, Sun J, Wang F, Liu X. Nanoscale Adv, 2019, 1: 765–771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21625502, 21974070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinshu Zhu or Zhihui Dai.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yu, R., Wang, Z. et al. A facile and sensitive colorimetric detection for RNase A activity based on target regulated protection effect on plasmonic gold nanoparticles aggregation. Sci. China Chem. 63, 860–864 (2020). https://doi.org/10.1007/s11426-020-9702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9702-1

Keywords

Navigation