Skip to main content
Log in

Photoredox/palladium-cocatalyzed enantioselective alkylation of secondary benzyl carbonates with 4-alkyl-1,4-dihydropyridines

  • Articles
  • SPECIAL ISSUE: Celebrating the 100th Anniversary of Chemical Sciences in Nanjing University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A photoredox/palladium-cocatalyzed enantioselective alkylation of racemic secondary carbonates with 4-alkyl-1,4-dihydropyridines under visible light irradiation has been developed. The present study provides a method for the preparation of optically active diarylalkanes from racemic diarylmethyl carbonates by a dynamic kinetic asymmetric transformation (DYKAT). This photoredox/palladium dual catalysis strategy expands the scope of the asymmetric Pd-catalyzed benzylic substitution reaction and serves as its potential alternative and complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuji J, Minami I. Acc Chem Res, 1987, 20: 140–145

    CAS  Google Scholar 

  2. Trost BM, Crawley ML. Chem Rev, 2003, 103: 2921–2944

    CAS  PubMed  Google Scholar 

  3. Trost BM, Machacek MR, Aponick A. Acc Chem Res, 2006, 39: 747–760

    CAS  PubMed  Google Scholar 

  4. Trost BM. Tetrahedron, 2015, 71: 5708–5733

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsuji J. Tetrahedron, 2015, 71: 6330–6348

    CAS  Google Scholar 

  6. Trost BM, Dietsch TJ. J Am Chem Soc, 1973, 95: 8200–8201

    CAS  Google Scholar 

  7. Trost BM, Strege PE. J Am Chem Soc, 1977, 99: 1649–1651

    CAS  Google Scholar 

  8. Trost B, Schultz J. Synthesis, 2019, 51: 1–30

    CAS  Google Scholar 

  9. For reviews on benzylic alkylations via π-benzylpalladium intermediates, see:(a)_Trost BM, Czabaniuk LC. Angew Chem Int Ed, 2014, 53: 2826–2851

    CAS  Google Scholar 

  10. Le Bras J, Muzart J. Eur J Org Chem, 2016, 15: 2565–2593

    Google Scholar 

  11. Trost BM, Czabaniuk LC. J Am Chem Soc, 2010, 132: 15534–15536

    CAS  PubMed  Google Scholar 

  12. Trost BM, Czabaniuk LC. J Am Chem Soc, 2012, 134: 5778–5781

    CAS  PubMed  Google Scholar 

  13. Schwarz KJ, Yang C, Fyfe JWB, Snaddon TN. Angew Chem Int Ed, 2018, 57: 12102–1210105

    CAS  Google Scholar 

  14. Faber K. Chem Eur J, 2001, 7: 5004–5010

    CAS  PubMed  Google Scholar 

  15. Trost BM, Fandrick MR. Aldrichim Acta, 2007, 40: 59–72

    CAS  Google Scholar 

  16. Steinreiber J, Faber K, Griengl H. Chem Eur J, 2008, 14: 8060–8072

    CAS  PubMed  Google Scholar 

  17. Bhat V, Welin ER, Guo X, Stoltz BM. Chem Rev, 2017, 117: 4528–4561

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wencel-Delord J, Colobert F. Synthesis, 2016, 48: 2981–2996

    CAS  Google Scholar 

  19. Legros JY, Toffano M, Fiaud JC. Tetrahedron, 1995, 51: 3235–3246

    CAS  Google Scholar 

  20. Legros JY, Boutros A, Fiaud JC, Toffano M. J Mol Catal A-Chem, 2003, 196: 21–25

    CAS  Google Scholar 

  21. Tabuchi S, Hirano K, Miura M. Angew Chem Int Ed, 2016, 55: 6973–6977

    CAS  Google Scholar 

  22. Najib A, Hirano K, Miura M. Org Lett, 2017, 19: 2438–2441

    CAS  PubMed  Google Scholar 

  23. Matsude A, Hirano K, Miura M. Org Lett, 2018, 20: 3553–3556

    CAS  PubMed  Google Scholar 

  24. Najib A, Hirano K, Miura M. Chem Eur J, 2018, 24: 6525–6529

    CAS  PubMed  Google Scholar 

  25. For selected examples on benzylic substitution in a racemic manner, see: (a) Kuwano R, Kondo Y, Matsuyama Y. J Am Chem Soc, 2003, 125: 12104–12105

    CAS  PubMed  Google Scholar 

  26. Kuwano R, Kondo Y. Org Lett, 2004, 6: 3545–3547

    CAS  PubMed  Google Scholar 

  27. Kuwano R, Kusano H. Chem Lett, 2007, 36: 528–529

    CAS  Google Scholar 

  28. Torregrosa RRP, Ariyarathna Y, Chattopadhyay K, Tunge JA. J Am Chem Soc, 2010, 132: 9280–9282

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yasuda S, Ishii T, Takemoto S, Haruki H, Ohmiya H. Angew Chem Int Ed, 2018, 57: 2938–2942

    CAS  Google Scholar 

  30. For selected examples on Ni-catalyzed benzylic substitutions, see: (a) Taylor BLH, Swift EC, Waetzig JD, Jarvo ER. J Am Chem Soc, 2011, 133: 389–391

    CAS  PubMed  Google Scholar 

  31. Taylor BLH, Harris MR, Jarvo ER. Angew Chem Int Ed, 2012, 51: 7790–7793

    CAS  Google Scholar 

  32. Greene MA, Yonova IM, Williams FJ, Jarvo ER. Org Lett, 2012, 14: 4293–4296

    CAS  PubMed  Google Scholar 

  33. Harris MR, Hanna LE, Greene MA, Moore CE, Jarvo ER. J Am Chem Soc, 2013, 135: 3303–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wisniewska HM, Swift EC, Jarvo ER. J Am Chem Soc, 2013, 135: 9083–9090

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yonova IM, Johnson AG, Osborne CA, Moore CE, Morrissette NS, Jarvo ER. Angew Chem Int Ed, 2014, 53: 2422–2427

    CAS  Google Scholar 

  36. Martin-Montero R, Krolikowski T, Zarate C, Manzano R, Martin R. Synlett, 2017, 28: 2604–2608

    CAS  Google Scholar 

  37. Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J Am Chem Soc, 2013, 135: 3307–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Arp FO, Fu GC. J Am Chem Soc, 2005, 127: 10482–10483

    CAS  PubMed  Google Scholar 

  39. Binder JT, Cordier CJ, Fu GC. J Am Chem Soc, 2012, 134: 17003–17006

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Do HQ, Chandrashekar ERR, Fu GC. J Am Chem Soc, 2013, 135: 16288–16291

    CAS  PubMed  Google Scholar 

  41. Anthony D, Lin Q, Baudet J, Diao T. Angew Chem Int Ed, 2019, 58: 3198–3202

    CAS  Google Scholar 

  42. For selected examples using “hard” nucleophiles, see: (a) Trost BM, Thaisrivongs DA, Hartwig J. J Am Chem Soc, 2011, 133: 12439–12441

    CAS  PubMed  Google Scholar 

  43. Ardolino MJ, Morken JP. J Am Chem Soc, 2014, 136: 7092–7100

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Misale A, Niyomchon S, Luparia M, Maulide N. Angew Chem Int Ed, 2014, 53: 7068–7073

    CAS  Google Scholar 

  45. Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew Chem Int Ed, 2016, 55: 2526–2530

    CAS  Google Scholar 

  46. Murakami R, Sano K, Iwai T, Taniguchi T, Monde K, Sawamura M. Angew Chem Int Ed, 2018, 57: 9465–9469

    CAS  Google Scholar 

  47. Li TR, Maliszewski ML, Xiao WJ, Tunge JA. Org Lett, 2018, 20: 1730–1734

    CAS  PubMed  Google Scholar 

  48. Mendis SN, Tunge JA. Org Lett, 2015, 17: 5164–5167

    CAS  PubMed  Google Scholar 

  49. Zhou Z, Nie X, Harms K, Riedel R, Zhang L, Meggers E. Sci China Chem, 2019, 62: 1512–1518

    CAS  Google Scholar 

  50. For selected reviews on the merge of photoredox and transtion metal catalysis, see: (a) Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc Chem Res, 2016, 49: 1429–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 0052

    CAS  Google Scholar 

  53. Parasram M, Gevorgyan V. Chem Soc Rev, 2017, 46: 6227–6240

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    CAS  Google Scholar 

  56. For a review on transition metals and photoredox cocatalyzed allylic substitutions, see: (a) Zhang HH, Yu S. Acta Chim Sin, 2019, 77: 832–840

    Google Scholar 

  57. Matsui JK, Gutiérrez-Bonet Á, Rotella M, Alam R, Gutierrez O, Molander GA. Angew Chem Int Ed, 2018, 57: 15847–15851

    CAS  Google Scholar 

  58. Thullen SM, Rovis T. J Am Chem Soc, 2017, 139: 15504–15508

    CAS  PubMed  Google Scholar 

  59. Zheng J, Breit B. Angew Chem Int Ed, 2019, 58: 3392–3397

    CAS  Google Scholar 

  60. Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J Am Chem Soc, 2018, 140: 12705–12709

    CAS  PubMed  Google Scholar 

  61. Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem Sci, 2019, 10: 3459–3465

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen M, Zhao MN, Zhang YD, Ren ZH, Guan ZH. Sci China Chem, 2018, 61: 695–701

    CAS  Google Scholar 

  63. Noble A, Aggarwal VK. Sci China Chem, 2019, 62: 1083–1084

    CAS  Google Scholar 

  64. Lang SB, O’Nele KM, Tunge JA. J Am Chem Soc, 2014, 136: 13606–13609

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem Eur J, 2015, 21: 18589–18593

    CAS  PubMed  Google Scholar 

  66. Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu LQ, Xiao WJ, Alper H. Angew Chem Int Ed, 2015, 54: 1625–1628

    CAS  Google Scholar 

  67. Zhang HH, Zhao JJ, Yu S. J Am Chem Soc, 2018, 140: 16914–16919

    CAS  PubMed  Google Scholar 

  68. Gutiérrez-Bonet Á, Remeur C, Matsui JK, Molander GA. J Am Chem Soc, 2017, 139: 12251–12258

    PubMed  PubMed Central  Google Scholar 

  69. Zhang HH, Yu S. J Org Chem, 2017, 82: 9995–10006

    CAS  PubMed  Google Scholar 

  70. Verrier C, Alandini N, Pezzetta C, Moliterno M, Buzzetti L, Hepburn HB, Vega-Peñaloza A, Silvi M, Melchiorre P. ACS Catal, 2018, 8: 1062–1066

    CAS  Google Scholar 

  71. Huang W, Cheng X. Synlett, 2017, 28: 148–158

    CAS  Google Scholar 

  72. Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J Am Chem Soc, 2011, 133: 18566–18569

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Neufeldt SR, Sanford MS. Adv Synth Catal, 2012, 354: 3517–3522

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou C, Li P, Zhu X, Wang L. Org Lett, 2015, 17: 6198–6201

    CAS  PubMed  Google Scholar 

  75. Sharma UK, Gemoets HPL, Schröder F, Noël T, Van der Eycken EV. ACS Catal, 2017, 7: 3818–3823

    CAS  Google Scholar 

  76. Powers DC, Ritter T. Nat Chem, 2009, 1: 302–309

    CAS  PubMed  Google Scholar 

  77. Powers DC, Benitez D, Tkatchouk E, Goddard III WA, Ritter T. J Am Chem Soc, 2010, 132: 14092–14103

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Maestri G, Malacria M, Derat E. Chem Commun, 2013, 49: 10424–10426

    CAS  Google Scholar 

  79. Choi S, Chatterjee T, Choi WJ, You Y, Cho EJ. ACS Catal, 2015, 5: 4796–4802

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971110, 21732003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouyun Yu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2019_9732_MOESM1_ESM.pdf

Photoredox/palladium-cocatalyzed enantioselective alkylation of secondary benzyl carbonates with 4-alkyl-1,4-dihydropyridines

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Qian, L. & Yu, S. Photoredox/palladium-cocatalyzed enantioselective alkylation of secondary benzyl carbonates with 4-alkyl-1,4-dihydropyridines. Sci. China Chem. 63, 687–691 (2020). https://doi.org/10.1007/s11426-019-9732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9732-5

Key Words

Navigation