Skip to main content
Log in

Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic heterostructures (OHSs) consist of organic micro/nanocrystals are of essential importance for the construction of integrated optoelectronics in the future. However, the scarcity of materials and the problem of phase separation still hinder the fine synthesis of OHSs. Herein, based on the α phase one-dimensional (1D) microrods and the β phase 2D microplates of one organic compound 3,3′-((1E,1′E)-anthracene-9,10-diylbis(ethane-2,1-diyl))dibenzonitril (m-B2BCB), we facilely synthesized the OHSs composed of these two polymorph phases, whose growth mechanism is attributed to the low lattice mismatch rate of 5.8% between (001) plane of α phase (trunk) and (010) crystal plane of β phase (branch). Significantly, the multiport in/output channels can be achieved in the OHSs, which demonstrates the structure-dependent optical signals with the different output channels in the OHSs. Therefore, our experiment exhibits the great prospect of polymorphism in OHSs, which could provide further applications on multifunctional organic integrated photonics circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briseno AL, Mannsfeld SCB, Ling MM, Liu S, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao Z. Nature, 2006, 1: 913–917

    Google Scholar 

  2. Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R. Nat Nanotech, 2010, 1: 225–229

    Google Scholar 

  3. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM. Nano Lett, 2003, 1: 149–152

    Google Scholar 

  4. Liu J, Jiang L, Hu W, Liu Y, Zhu D. Sci China Chem, 2019, 1: 313–330

    Google Scholar 

  5. Li J, Li C, Sun L, Zhang X, Cheng S, Hu W. Sci China Chem, 2019, 1: 916–920

    Google Scholar 

  6. Li Q, Jia Y, Dai L, Yang Y, Li J. ACS Nano, 2015, 1: 2689–2695

    Google Scholar 

  7. Zhao YS, Xu J, Peng A, Fu H, Ma Y, Jiang L, Yao J. Angew Chem Int Ed, 2008, 1: 7301–7305

    Google Scholar 

  8. Chandrasekhar N, Chandrasekar R. Angew Chem Int Ed, 2012, 1: 3556–3561

    Google Scholar 

  9. Bao J, Zimmler MA, Capasso F, Wang X, Ren ZF. Nano Lett, 2006, 1: 1719–1722

    Google Scholar 

  10. Sarwar ATMG, Carnevale SD, Yang F, Kent TF, Jamison JJ, McComb DW, Myers RC. Small, 2015, 1: 5402–5408

    Google Scholar 

  11. Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T. Nat Mater, 2009, 1: 494–499

    Google Scholar 

  12. Zhang C, Dong H, Zhao YS. Adv Opt Mater, 2018, 6: 6

    Google Scholar 

  13. Venkatakrishnarao D, Mohiddon MA, Chandrasekhar N, Chandrasekar R. Adv Opt Mater, 2015, 1: 1035–1040

    Google Scholar 

  14. Zheng JY, Yan Y, Wang X, Shi W, Ma H, Zhao YS, Yao J. Adv Mater, 2012, 24: OP194–OP199

    PubMed  CAS  Google Scholar 

  15. Cai W, Wang J, Liu H, Chen W, Wang J, Du L, Hu J, Wu C. J Alloys Compd, 2018, 1: 193–198

    Google Scholar 

  16. Kong Q, Liao Q, Xu Z, Wang X, Yao J, Fu H. J Am Chem Soc, 2014, 1: 2382–2388

    Google Scholar 

  17. Yan Y, Zhang C, Zheng JY, Yao J, Zhao YS. Adv Mater, 2012, 1: 5681–5686

    Google Scholar 

  18. Lei Y, Liao Q, Fu H, Yao J. J Am Chem Soc, 2010, 1: 1742–1743

    Google Scholar 

  19. Zhuo MP, Wu JJ, Wang XD, Tao YC, Yuan Y, Liao LS. Nat Commun, 2019, 10: 10

    Google Scholar 

  20. Wei H, Wang Z, Tian X, Käll M, Xu H. Nat Commun, 2011, 2: 2

    Google Scholar 

  21. Zheng JY, Yan Y, Wang X, Zhao YS, Huang J, Yao J. J Am Chem Soc, 2012, 1: 2880–2883

    Google Scholar 

  22. Zhang Y, Liao Q, Wang X, Yao J, Fu H. Angew Chem Int Ed, 2017, 1: 3616–3620

    Google Scholar 

  23. Nguyen TQ, Martel R, Avouris P, Bushey ML, Brus L, Nuckolls C. J Am Chem Soc, 2004, 1: 5234–5242

    Google Scholar 

  24. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ. Chem Rev, 2005, 1: 1491–1546

    Google Scholar 

  25. Hinoue T, Shigenoi Y, Sugino M, Mizobe Y, Hisaki I, Miyata M, Tohnai N. Chem Eur J, 2012, 1: 4634–4643

    Google Scholar 

  26. Zhang Z, Liu Q, Dong H, Hu W. Sci China Chem, 2019, 1: 1271–1274

    Google Scholar 

  27. Li W, Zhao C, Zou B, Zhang X, Yu J, Zhang X, Jie J. CrystEngComm, 2012, 1: 8124–8127

    Google Scholar 

  28. Lei Y, Sun Y, Liao L, Lee ST, Wong WY. Nano Lett, 2017, 1: 695–701

    Google Scholar 

  29. Treat ND, Chabinyc ML. Annu Rev Phys Chem, 2014, 1: 59–81

    Google Scholar 

  30. Liu H, Cheng X, Bian Z, Ye K, Zhang H. Chin Chem Lett, 2018, 1: 1537–1540

    Google Scholar 

  31. Zhang Z, Zhang Y, Yao D, Bi H, Javed I, Fan Y, Zhang H, Wang Y. Cryst Growth Des, 2009, 1: 5069–5076

    Google Scholar 

  32. Gu X, Yao J, Zhang G, Yan Y, Zhang C, Peng Q, Liao Q, Wu Y, Xu Z, Zhao Y, Fu H, Zhang D. Adv Funct Mater, 2012, 1: 4862–4872

    Google Scholar 

  33. Xu Z, Zhang Z, Jin X, Liao Q, Fu H. Chem Asian J, 2017, 1: 2985–2990

    Google Scholar 

  34. He Z, Zhang L, Mei J, Zhang T, Lam JWY, Shuai Z, Dong YQ, Tang BZ. Chem Mater, 2015, 1: 6601–6607

    Google Scholar 

  35. Lei Y, Sun Y, Zhang Y, Zhang H, Zhang H, Meng Z, Wong WY, Yao J, Fu H. Nat Commun, 2018, 9: 9

    Google Scholar 

  36. Lei YL, Liao LS, Lee ST. J Am Chem Soc, 2013, 1: 3744–3747

    Google Scholar 

  37. Wang K, Zhang H, Chen S, Yang G, Zhang J, Tian W, Su Z, Wang Y. Adv Mater, 2014, 1: 6168–6173

    Google Scholar 

  38. Tao Y, Peng S, Wang X, Li Z, Zhang X, Liao L. Adv Funct Mater, 2018, 28: 28

    Google Scholar 

  39. Zhuo MP, Tao YC, Wang XD, Wu Y, Chen S, Liao LS, Jiang L. Angew Chem Int Ed, 2018, 1: 11300–11304

    Google Scholar 

  40. Zhao J, Zhang T, Dong XY, Sun ME, Zhang C, Li X, Zhao YS, Zang SQ. J Am Chem Soc, 2019, 1: 15755–15760

    Google Scholar 

  41. Huang R, Wang C, Wang Y, Zhang H. Adv Mater, 2018, 30: 30

    Google Scholar 

  42. Zhang C, Zou CL, Dong H, Yan Y, Yao J, Zhao YS. Sci Adv, 2017, 3: e1700225

    PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Hu H, Xu L, Qiu B, Liang J, Ding F, Wang K, Chu M, Zhang W, Ma M, Chen B, Yang X, Zhao YS. Angew Chem Int Ed, 2020, 1: 4456–4463

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21703148, 21971185), and the Natural Science Foundation of Jiangsu Province (BK20170330), the Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the “111” Project of the State Administration of Foreign Experts Affairs of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Dong Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Tao, YC., Zou, SN. et al. Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. Sci. China Chem. 63, 1477–1482 (2020). https://doi.org/10.1007/s11426-019-9706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9706-x

Keywords

Navigation