Skip to main content
Log in

Tweaking the acid-sensitivity of transiently thermoresponsive Polyacrylamides with cyclic acetal repeating units

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Merging the characteristics of thermoresponsive and stimuli-degradable polymers yields so-called transiently thermoresponsive polymers, which can find application for the design of injectable gels, nanoparticles, etc. within a biomedical context. Among these polymers, only a limited number is reported which shows selective degradation under mild acidic conditions. However, extension of the library of transiently thermoresponsive polymers is desired to broadening the biomaterials toolbox to suit specific needs. Three monomers were developed by modification of 2-hydroxyethylacrylamide (HEAm) via tetrahydropyranylation or -furanylation with 3,4-dihydro-2H-pyran (DHP), 2,3-dihydrofuran (DHF) or 2,3-dihydro-5-methylfuran (MeDHF). The presence of an acetal or ketal bond provided the monomers a pH-dependent hydrolysis behavior ranging from minutes to days. RAFT polymerisation allowed for the construction of homopolymers with temperature responsive behavior and pH-dependent hydrolysis which was strongly influenced by nature of the monomeric repeating units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ringsdorf H. J Polym Sci C Polym Symp, 2007, 51: 135–153

    Google Scholar 

  2. Harris JM, Chess RB. Nat Rev Drug Discov, 2003, 2: 214–221

    PubMed  CAS  Google Scholar 

  3. Owensiii D, Peppas N. Int J Pharm, 2006, 307: 93–102

    Google Scholar 

  4. Davis ME, Chen ZG, Shin DM. Nat Rev Drug Discov, 2008, 7: 771–782

    PubMed  CAS  Google Scholar 

  5. Moses MA, Brem H, Langer R. Cancer Cell, 2003, 4: 337–341

    PubMed  CAS  Google Scholar 

  6. Louage B, De Wever O, Hennink WE, De Geest BG. J Control Release, 2017, 253: 137–152

    PubMed  CAS  Google Scholar 

  7. Louage B, Zhang Q, Vanparijs N, Voorhaar L, Vande Casteele S, Shi Y, Hennink WE, Van Bocxlaer J, Hoogenboom R, De Geest BG. Biomacromolecules, 2015, 16: 336–350

    PubMed  CAS  Google Scholar 

  8. Kasmi S, Louage B, Nuhn L, Van Driessche A, Van Deun J, Karalic I, Risseeuw M, Van Calenbergh S, Hoogenboom R, De Rycke R, De Wever O, Hennink WE, De Geest BG. Biomacromolecules, 2016, 17: 119–127

    PubMed  CAS  Google Scholar 

  9. Shi Y, van der Meel R, Theek B, Oude Blenke E, Pieters EHE, Fens MHAM, Ehling J, Schiffelers RM, Storm G, van Nostrum CF, Lammers T, Hennink WE. ACS Nano, 2015, 9: 3740–3752

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Vanparijs N, Nuhn L, De Geest BG. Chem Soc Rev, 2017, 46: 1193–1239

    PubMed  CAS  Google Scholar 

  11. Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J. Chem Soc Rev, 2014, 43: 6982–7012

    PubMed  CAS  Google Scholar 

  12. Roy D, Brooks WLA, Sumerlin BS. Chem Soc Rev, 2013, 42: 7214–7243

    CAS  Google Scholar 

  13. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9: 101–113

    PubMed  Google Scholar 

  14. Gil E, Hudson S. Prog Polym Sci, 2004, 29: 1173–1222

    CAS  Google Scholar 

  15. Zhang Z, Maji S, da Fonseca Antunes AB, De Rycke R, Hoogenboom R, De Geest BG. Angew Chem Int Ed, 2016, 55: 7086–7090

    CAS  Google Scholar 

  16. Schild HG. Prog Polym Sci, 1992, 17: 163–249

    CAS  Google Scholar 

  17. Yin L, He C, Huang C, Zhu W, Wang X, Xu Y, Qian X. Chem Commun, 2012, 48: 4486

    CAS  Google Scholar 

  18. Lutz JF. J Polym Sci A Polym Chem, 2008, 46: 3459–3470

    CAS  Google Scholar 

  19. Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12: 991–1003

    PubMed  CAS  Google Scholar 

  20. Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Nat Biotechnol, 2018, 36: 707–716

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu B, Thayumanavan S. J Am Chem Soc, 2017, 139: 2306–2317

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Zheng L, Zhang X, Wang Y, Liu F, Peng J, Zhao X, Yang H, Ma L, Wang B, Chang C, Wei H. Biomacromolecules, 2018, 19: 3874–3882

    PubMed  CAS  Google Scholar 

  23. Zhang Z, Li H, Kasmi S, Van Herck S, Deswarte K, Lambrecht BN, Hoogenboom R, Nuhn L, De Geest BG. Angew Chem Int Ed, 2019, 58: 7866–7872

    CAS  Google Scholar 

  24. Binauld S, Stenzel MH. Chem Commun, 2013, 49: 2082

    CAS  Google Scholar 

  25. Jain R, Standley SM, Fréchet JMJ. Macromolecules, 2007, 40: 452–457

    CAS  Google Scholar 

  26. Heffernan MJ, Murthy N. Bioconjugate Chem, 2005, 16: 1340–1342

    CAS  Google Scholar 

  27. Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Fréchet JMJ. Proc Natl Acad Sci USA, 2003, 100: 4995–5000

    PubMed  CAS  Google Scholar 

  28. Shenoi RA, Narayanannair JK, Hamilton JL, Lai BFL, Horte S, Kainthan RK, Varghese JP, Rajeev KG, Manoharan M, Kizhakkedathu JN. J Am Chem Soc, 2012, 134: 14945–14957

    PubMed  CAS  Google Scholar 

  29. Lingier S, Nevejans S, Espeel P, De Wildeman S, Du Prez FE. Polymer, 2016, 103: 98–103

    CAS  Google Scholar 

  30. Delplace V, Nicolas J. Nat Chem, 2015, 7: 771–784

    PubMed  CAS  Google Scholar 

  31. Wang Y, Huang D, Wang X, Yang F, Shen H, Wu D. Biomater Sci, 2019, 7: 3238–3248

    PubMed  CAS  Google Scholar 

  32. Vanparijs N, De Coen R, Laplace D, Louage B, Maji S, Lybaert L, Hoogenboom R, De Geest BG. Chem Commun, 2015, 51: 13972–13975

    CAS  Google Scholar 

  33. Zou Y, Brooks DE, Kizhakkedathu JN. Macromolecules, 2008, 41: 5393–5405

    CAS  Google Scholar 

  34. Van Herck S, Van Hoecke L, Louage B, Lybaert L, De Coen R, Kasmi S, Esser-Kahn AP, David SA, Nuhn L, Schepens B, Saelens X, De Geest BG. Bioconjugate Chem, 2018, 29: 748–760

    CAS  Google Scholar 

  35. Ferguson CJ, Hughes RJ, Nguyen D, Pham BTT, Gilbert RG, Serelis AK, Such CH, Hawkett BS. Macromolecules, 2005, 38: 2191–2204

    CAS  Google Scholar 

  36. Van Herck S, Hassannia B, Louage B, Pita Compostizo R, De Coen R, Vanden Berghe W, Vanden Berghe T, De Geest BG. Eur Polym J, 2019, 110: 313–318

    CAS  Google Scholar 

  37. Gibson MI, O’Reilly RK. Chem Soc Rev, 2013, 42: 7204–7213

    PubMed  CAS  Google Scholar 

  38. Wuts, P. G. M, Greene, T. W. Greene’s Protective Groups in Organic Synthesis. 4th ed. Hoboken: John Wiley & Sons, Inc., 2006

    Google Scholar 

  39. Kotke M, Schreiner PR. Tetrahedron, 2006, 62: 434–439

    CAS  Google Scholar 

  40. Kotke M, Schreiner PR. Chemlnform, 2007, 38: 779–790

    Google Scholar 

  41. Deslongchamps P, Dory YL, Li S. Tetrahedron, 2000, 56: 3533–3537

    CAS  Google Scholar 

  42. Kasmi S, Louage B, Nuhn L, Verstraete G, Van Herck S, van Steenbergen MJ, Vervaet C, Hennink WE, De Geest BG. Polym Chem, 2017, 8: 6544–6557

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ghent University through the BOF-GOA grant scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno G. De Geest.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Herck, S., De Geest, B.G. Tweaking the acid-sensitivity of transiently thermoresponsive Polyacrylamides with cyclic acetal repeating units. Sci. China Chem. 63, 504–512 (2020). https://doi.org/10.1007/s11426-019-9705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9705-4

Keywords

Navigation