Skip to main content
Log in

Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cell-derived microvesicles (MVs) are secreted from almost all kinds of mammalian cells into the extracellular space, and play crucial roles in intercellular communication and transporting biomolecules between cells. However, there is a great challenge for visualizing and monitoring of MVs’ bio-behaviors due to the limitations of existing labeling methods. Herein, we report the first paradigm of designer cell-self-implemented labeling of MVs secreted from living mammalian MCF-7 cells in situ using the intracellular-synthesized fluorescent quantum dots (QDs) during the formation of MVs. By elaborately coupling intracellular biochemical reactions and metabolism pathways, the MCF-7 cells can be illuminated brightly by intracellular-biosynthesized fluorescent CdSe QDs. Simultaneously, intracellular-synthesized QDs can be in situ encapsulated by the secreted MVs budding from the plasma membrane of the fluorescing cells to label the MVs with an efficiency of up to 89.9%. The whole labeling process skillfully combines designer precise cell-tuned intricate synthesis of CdSe QDs with mild in-situ labeling via cell-self-implementation just after feeding the cell with suitable chemicals, which is structure- or function-nondestructive and much more straightforward and milder than those by chemical conjugation or indirect encapsulation with conventional fluorogenic labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hötzer B, Medintz IL, Hildebrandt N. Small, 2012, 8: 2297–2326

    Article  CAS  Google Scholar 

  2. He X, Zhao Z, Xiong LH, Gao PF, Peng C, Li RS, Xiong Y, Li Z, Sung HHY, Williams ID, Kwok RTK, Lam JWY, Huang CZ, Ma N, Tang BZ. J Am Chem Soc, 2018, 140: 6904–6911

    Article  CAS  Google Scholar 

  3. He X, Yin F, Wang D, Xiong LH, Kwok RTK, Gao PF, Zhao Z, Lam JWY, Yong KT, Li Z, Tang BZ. Nano Lett, 2019, 19: 2272–2279

    Article  CAS  Google Scholar 

  4. Xiong LH, He X, Zhao Z, Kwok RTK, Xiong Y, Gao PF, Yang F, Huang Y, Sung HHY, Williams ID, Lam JWY, Cheng J, Zhang R, Tang BZ. ACS Nano, 2018, 12: 9549–9557

    Article  CAS  Google Scholar 

  5. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Nat Mater, 2005, 4: 435–446

    Article  CAS  Google Scholar 

  6. Parak WJ, Pellegrino T, Plank C. Nanotechnology, 2009, 16: R9–R25

    Article  Google Scholar 

  7. Li X, Zhou Y, Zheng Z, Yue X, Dai Z, Liu S, Tang Z. Langmuir, 2009, 25: 6580–6586

    Article  CAS  Google Scholar 

  8. Ke H, Xing Z, Zhao B, Wang J, Liu J, Guo C, Yue X, Liu S, Tang Z, Dai Z. Nanotechnology, 2009, 20: 425105

    Article  CAS  Google Scholar 

  9. Mause SF, Weber C. Circ Res, 2010, 107: 1047–1057

    Article  CAS  Google Scholar 

  10. Raposo G, Stoorvogel W. J Cell Biol, 2013, 200: 373–383

    Article  CAS  Google Scholar 

  11. Cocucci E, Racchetti G, Meldolesi J. Trends Cell Biol, 2009, 19: 43–51

    Article  CAS  Google Scholar 

  12. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Nat Commun, 2011, 2: 1–9

    Article  CAS  Google Scholar 

  13. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Leukemia, 2006, 20: 847–856

    Article  CAS  Google Scholar 

  14. Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS, Puente N, Ayala C, Brilliant K, Berz D, Lee D, Ramratnam B, McMillan PN, Hixson DC, Josic D, Quesenberry PJ. Exp Hematology, 2010, 38: 233–245

    Article  CAS  Google Scholar 

  15. Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G. STEM Cells, 2012, 30: 1985–1998

    Article  CAS  Google Scholar 

  16. Zhao JY, Chen G, Gu YP, Cui R, Zhang ZL, Yu ZL, Tang B, Zhao YF, Pang DW. J Am Chem Soc, 2016, 138: 1893–1903

    Article  CAS  Google Scholar 

  17. Silva AKA, Kolosnjaj-Tabi J, Bonneau S, Marangon I, Boggetto N, Aubertin K, Clément O, Bureau MF, Luciani N, Gazeau F, Wilhelm C. ACS Nano, 2013, 7: 4954–4966

    Article  CAS  Google Scholar 

  18. Chen G, Zhu JY, Zhang ZL, Zhang W, Ren JG, Wu M, Hong ZY, Lv C, Pang DW, Zhao YF. Angew Chem Int Ed, 2015, 54: 1036–1040

    Article  CAS  Google Scholar 

  19. Lee J, Kim J, Jeong M, Lee H, Goh U, Kim H, Kim B, Park JH. Nano Lett, 2015, 15: 2938–2944

    Article  CAS  Google Scholar 

  20. Zhu L, Dong D, Yu ZL, Zhao YF, Pang DW, Zhang ZL. ACS Appl Mater Interfaces, 2017, 9: 5100–5108

    Article  CAS  Google Scholar 

  21. Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, Smith-Jones P, Anchordoquy TJ. Bioconjugate Chem, 2014, 25: 1777–1784

    Article  CAS  Google Scholar 

  22. Huang BH, Lin Y, Zhang ZL, Zhuan F, Liu AA, Xie M, Tian ZQ, Zhang Z, Wang H, Pang DW. ACS Chem Biol, 2012, 7: 683–688

    Article  CAS  Google Scholar 

  23. Cui R, Liu HH, Xie HY, Zhang ZL, Yang YR, Pang DW, Xie ZX, Chen BB, Hu B, Shen P. Adv Funct Mater, 2009, 19: 2359–2364

    Article  CAS  Google Scholar 

  24. Li Y, Cui R, Zhang P, Chen BB, Tian ZQ, Li L, Hu B, Pang DW, Xie ZX. ACS Nano, 2013, 7: 2240–2248

    Article  CAS  Google Scholar 

  25. Luo QY, Lin Y, Li Y, Xiong LH, Cui R, Xie ZX, Pang DW. Small, 2014, 10: 699–704

    Article  CAS  Google Scholar 

  26. Xiong LH, Cui R, Zhang ZL, Yu X, Xie Z, Shi YB, Pang DW. ACS Nano, 2014, 8: 5116–5124

    Article  CAS  Google Scholar 

  27. Xiong LH, Cui R, Zhang ZL, Tu JW, Shi YB, Pang DW. Small, 2015, 11: 5416–5422

    Article  CAS  Google Scholar 

  28. Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD, Howard DL, Witting PK, Musgrave IF, Harris HH. J Am Chem Soc, 2011, 133: 18272–18279

    Article  CAS  Google Scholar 

  29. Tian LJ, Li WW, Zhu TT, Chen JJ, Wang WK, An PF, Zhang L, Dong JC, Guan Y, Liu DF, Zhou NQ, Liu G, Tian YC, Yu HQ. J Am Chem Soc, 2017, 139: 12149–12152

    Article  CAS  Google Scholar 

  30. He X, Gao L, Ma N. Sci Rep, 2013, 3: 2825

    Article  Google Scholar 

  31. He X, Li Z, Chen M, Ma N. Angew Chem Int Ed, 2014, 53: 14447–14450

    Article  CAS  Google Scholar 

  32. He X, Zeng T, Li Z, Wang G, Ma N. Angew Chem Int Ed, 2016, 55: 3073–3076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21535005, 91859123, 21705111). The authors thank Han Wang for her assistance in HPLC-ICP-MS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Wen Pang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, LH., Tu, JW., Zhang, YN. et al. Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Sci. China Chem. 63, 448–453 (2020). https://doi.org/10.1007/s11426-019-9697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9697-2

Keywords

Navigation