Skip to main content
Log in

An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo

  • Articles
  • Special Issue: Celebrating the 100th Anniversary of Chemical Sciences in Nanjing University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ratiometric fluorescent probes hold great promise for in vivo imaging; however, stimuli-activatable ratiometric probes with fluorescence emissions in near-infrared (NIR) region are still very few. Herein, we report a hydrogen sulfide (H2S)-activatable ratiometric NIR fluorescent probe (1-SPN) by integrating a H2S-responsive NIR fluorescent probe 1 into a H2S-inert poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based NIR semiconducting polymer nanoparticle (SPN). 1-SPN shows “always on” PCPDTBT fluorescence at 830 nm and weak probe 1 fluorescence at 725 nm under excitation at 680 nm. The ratio of NIR fluorescence intensities between 725 and 830 is small. Upon interaction with H2S, the fluorescence at 725 nm is rapidly switched on, resulting in a large enhancement of I725/I830, which is allowed for sensitive visualization and quantification of H2S concentrations in living cells. Taking advantage of enhanced tissue penetration depth of NIR fluorescence, 1-SPN is also applied for real-time ratiometric fluorescence imaging of hepatic and tumor H2S in living mice. This study demonstrates that activatable ratiometric NIR fluorescent probes hold great potential for in vivo imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. J Am Chem Soc, 2019, 1: 17973–17977

    Google Scholar 

  2. Zhao Y, Pluth MD. Angew Chem Int Ed, 2016, 1: 14638–14642

    Google Scholar 

  3. Ding S, Liu M, Hong Y. Sci China Chem, 2018, 1: 882–891

    Google Scholar 

  4. Zhou Y, Chen W, Zhu J, Pei W, Wang C, Huang L, Yao C, Yan Q, Huang W, Loo JSC, Zhang Q. Small, 2014, 1: 4874–4885

    Google Scholar 

  5. Ma T, Zheng J, Zhang T, Xing D. Nanoscale, 2018, 1: 13462–13470

    Google Scholar 

  6. Zhao Y, Yang Y, Cui L, Zheng F, Song Q. Biosens Bioelectron, 2018, 1: 53–59

    Google Scholar 

  7. Kolluru GK, Shen X, Bir SC, Kevil CG. Nitric Oxide, 2013, 1: 5–20

    Google Scholar 

  8. Zhang H, Kong X, Tang Y, Lin W. ACS Appl Mater Interfaces, 2016, 1: 16227–16239

    Google Scholar 

  9. Murfin LC, Weber M, Park SJ, Kim WT, Lopez-Alled CM, McMullin CL, Pradaux-Caggiano F, Lyall CL, Kociok-Köhn G, Wenk J, Bull SD, Yoon J, Kim HM, James TD, Lewis SE. J Am Chem Soc, 2019, 1: 19389–19396

    Google Scholar 

  10. Feng H, Zhang Z, Meng Q, Jia H, Wang Y, Zhang R. Adv Sci, 2018, 5: 1800397

    Google Scholar 

  11. Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Nat Chem, 2017, 1: 279–286

    Google Scholar 

  12. Liu M, Li Q, Liang L, Li J, Wang K, Li J, Lv M, Chen N, Song H, Lee J, Shi J, Wang L, Lal R, Fan C. Nat Commun, 2017, 8: 15646

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan R, Ye D. Sci Bull, 2016, 1: 1672–1679

    Google Scholar 

  14. Yan X, Le XC. Sci China Chem, 2019, 1: 887–888

    Google Scholar 

  15. Wang X, Li P, Ding Q, Wu C, Zhang W, Tang B. Angew Chem Int Ed, 2019, 1: 4674–4678

    Google Scholar 

  16. Long L, Huang M, Wang N, Wu Y, Wang K, Gong A, Zhang Z, Sessler JL. J Am Chem Soc, 2018, 1: 1870–1875

    Google Scholar 

  17. Repenko T, Rix A, Ludwanowski S, Go D, Kiessling F, Lederle W, Kuehne AJC. Nat Commun, 2017, 8: 8

    Google Scholar 

  18. Chen F, Han D, Gao Y, Liu H, Wang S, Zhou F, Li K, Zhang S, Shao W, He Y. Talanta, 2018, 1: 19–26

    Google Scholar 

  19. Wang P, Wu J, Di C, Zhou R, Zhang H, Su P, Xu C, Zhou P, Ge Y, Liu D, Liu W, Tang Y. Biosens Bioelectron, 2017, 1: 602–609

    Google Scholar 

  20. Chen S, Li H, Hou P. Sens Actuat B-Chem, 2018, 1: 1086–1092

    Google Scholar 

  21. Zhang Y, Huang X, Liu W, Zhang G, Zhang D, Jiang X. Sci China Chem, 2016, 1: 106–113

    Google Scholar 

  22. Chen L, Wu D, Lim CS, Kim D, Nam SJ, Lee W, Kim G, Kim HM, Yoon J. Chem Commun, 2017, 1: 4791–4794

    Google Scholar 

  23. Xu L, Ni L, Sun L, Zeng F, Wu S. Analyst, 2019, 1: 6570–6577

    Google Scholar 

  24. Reja SI, Sharma N, Gupta M, Bajaj P, Bhalla V, Parihar RD, Ohri P, Kaur G, Kumar M. Chem Eur J, 2017, 1: 9872–9878

    Google Scholar 

  25. Shi B, Ren N, Gu L, Xu G, Wang R, Zhu T, Zhu Y, Fan C, Zhao C, Tian H. Angew Chem Int Ed, 2019, 1: 16826–16830

    Google Scholar 

  26. Xu G, Yan Q, Lv X, Zhu Y, Xin K, Shi B, Wang R, Chen J, Gao W, Shi P, Fan C, Zhao C, Tian H. Angew Chem Int Ed, 2018, 1: 3626–3630

    Google Scholar 

  27. Zhao C, Zhang X, Li K, Zhu S, Guo Z, Zhang L, Wang F, Fei Q, Luo S, Shi P, Tian H, Zhu WH. J Am Chem Soc, 2015, 1: 8490–8498

    Google Scholar 

  28. Yang Y, Lei Y, Zhang X, Zhang S. Talanta, 2016, 1: 190–196

    Google Scholar 

  29. Wang P, Zhang C, Liu HW, Xiong M, Yin SY, Yang Y, Hu XX, Yin X, Zhang XB, Tan W. Chem Sci, 2017, 1: 8214–8220

    Google Scholar 

  30. Li X, Zhao H, Ji Y, Yin C, Li J, Yang Z, Tang Y, Zhang Q, Fan Q, Huang W. ACS Appl Mater Interfaces, 2018, 1: 39544–39556

    Google Scholar 

  31. Zhang X, Tan H, Yan Y, Hang Y, Yu F, Qu X, Hua J. J Mater Chem B, 2017, 1: 2172–2180

    Google Scholar 

  32. Cao T, Teng Z, Gong D, Qian J, Liu W, Iqbal K, Qin W, Guo H. Talanta, 2019, 1: 185–192

    Google Scholar 

  33. Li DP, Zhang JF, Cui J, Ma XF, Liu JT, Miao JY, Zhao BX. Sens Actuat B-Chem, 2016, 1: 231–238

    Google Scholar 

  34. Gao J, Li Q, Wang C, Tan H. Sens Actuat B-Chem, 2017, 1: 27–33

    Google Scholar 

  35. Yang G, Zhang J, Zhu S, Wang Y, Feng X, Yan M, Yu J. Sens Actuat B-Chem, 2018, 1: 51–57

    Google Scholar 

  36. Youssef S, Zhang S, Ai H. ACS Sens, 2019, 1: 1626–1632

    Google Scholar 

  37. Chen M, Chen R, Shi Y, Wang J, Cheng Y, Li Y, Gao X, Yan Y, Sun JZ, Qin A, Kwok RTK, Lam JWY, Tang BZ. Adv Funct Mater, 2018, 28: 28

    Google Scholar 

  38. Feng X, Zhang T, Liu JT, Miao JY, Zhao BX. Chem Commun, 2016, 1: 3131–3134

    Google Scholar 

  39. Zhou L, Lu D, Wang Q, Liu S, Lin Q, Sun H. Biosens Bioelectron, 2017, 1: 699–705

    Google Scholar 

  40. Yuan L, Lin W, Zheng K, He L, Huang W. Chem Soc Rev, 2013, 1: 622–661

    Google Scholar 

  41. Wang R, Yu F, Chen L, Chen H, Wang L, Zhang W. Chem Commun, 2012, 1: 11757–11759

    Google Scholar 

  42. Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Chem Soc Rev, 2018, 1: 2873–2920

    Google Scholar 

  43. Wang X, Sun J, Zhang W, Ma X, Lv J, Tang B. Chem Sci, 2013, 1: 2551–2556

    Google Scholar 

  44. Wang B, Li P, Yu F, Chen J, Qu Z, Han K. Chem Commun, 2013, 1: 5790–5792

    Google Scholar 

  45. Wu L, Sun Y, Sugimoto K, Luo Z, Ishigaki Y, Pu K, Suzuki T, Chen HY, Ye D. J Am Chem Soc, 2018, 1: 16340–16352

    Google Scholar 

  46. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH. Mol Cell, 2012, 1: 13–24

    Google Scholar 

  47. Umezawa K, Kamiya M, Urano Y. Angew Chem Int Ed, 2018, 1: 9346–9350

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21922406, 21775071, 21632008), the Natural Science Foundation of Jiangsu Province (BK20190055), the Fundamental Research Funds for the Central Universities (020514380185) and Excellent Research Program of Nanjing University (ZYJH004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deju Ye.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zeng, W., Feng, L. et al. An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo. Sci. China Chem. 63, 741–750 (2020). https://doi.org/10.1007/s11426-019-9689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9689-4

Keywords

Navigation