Abstract
Ratiometric fluorescent probes hold great promise for in vivo imaging; however, stimuli-activatable ratiometric probes with fluorescence emissions in near-infrared (NIR) region are still very few. Herein, we report a hydrogen sulfide (H2S)-activatable ratiometric NIR fluorescent probe (1-SPN) by integrating a H2S-responsive NIR fluorescent probe 1 into a H2S-inert poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based NIR semiconducting polymer nanoparticle (SPN). 1-SPN shows “always on” PCPDTBT fluorescence at 830 nm and weak probe 1 fluorescence at 725 nm under excitation at 680 nm. The ratio of NIR fluorescence intensities between 725 and 830 is small. Upon interaction with H2S, the fluorescence at 725 nm is rapidly switched on, resulting in a large enhancement of I725/I830, which is allowed for sensitive visualization and quantification of H2S concentrations in living cells. Taking advantage of enhanced tissue penetration depth of NIR fluorescence, 1-SPN is also applied for real-time ratiometric fluorescence imaging of hepatic and tumor H2S in living mice. This study demonstrates that activatable ratiometric NIR fluorescent probes hold great potential for in vivo imaging.
Similar content being viewed by others
References
Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. J Am Chem Soc, 2019, 1: 17973–17977
Zhao Y, Pluth MD. Angew Chem Int Ed, 2016, 1: 14638–14642
Ding S, Liu M, Hong Y. Sci China Chem, 2018, 1: 882–891
Zhou Y, Chen W, Zhu J, Pei W, Wang C, Huang L, Yao C, Yan Q, Huang W, Loo JSC, Zhang Q. Small, 2014, 1: 4874–4885
Ma T, Zheng J, Zhang T, Xing D. Nanoscale, 2018, 1: 13462–13470
Zhao Y, Yang Y, Cui L, Zheng F, Song Q. Biosens Bioelectron, 2018, 1: 53–59
Kolluru GK, Shen X, Bir SC, Kevil CG. Nitric Oxide, 2013, 1: 5–20
Zhang H, Kong X, Tang Y, Lin W. ACS Appl Mater Interfaces, 2016, 1: 16227–16239
Murfin LC, Weber M, Park SJ, Kim WT, Lopez-Alled CM, McMullin CL, Pradaux-Caggiano F, Lyall CL, Kociok-Köhn G, Wenk J, Bull SD, Yoon J, Kim HM, James TD, Lewis SE. J Am Chem Soc, 2019, 1: 19389–19396
Feng H, Zhang Z, Meng Q, Jia H, Wang Y, Zhang R. Adv Sci, 2018, 5: 1800397
Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Nat Chem, 2017, 1: 279–286
Liu M, Li Q, Liang L, Li J, Wang K, Li J, Lv M, Chen N, Song H, Lee J, Shi J, Wang L, Lal R, Fan C. Nat Commun, 2017, 8: 15646
Yan R, Ye D. Sci Bull, 2016, 1: 1672–1679
Yan X, Le XC. Sci China Chem, 2019, 1: 887–888
Wang X, Li P, Ding Q, Wu C, Zhang W, Tang B. Angew Chem Int Ed, 2019, 1: 4674–4678
Long L, Huang M, Wang N, Wu Y, Wang K, Gong A, Zhang Z, Sessler JL. J Am Chem Soc, 2018, 1: 1870–1875
Repenko T, Rix A, Ludwanowski S, Go D, Kiessling F, Lederle W, Kuehne AJC. Nat Commun, 2017, 8: 8
Chen F, Han D, Gao Y, Liu H, Wang S, Zhou F, Li K, Zhang S, Shao W, He Y. Talanta, 2018, 1: 19–26
Wang P, Wu J, Di C, Zhou R, Zhang H, Su P, Xu C, Zhou P, Ge Y, Liu D, Liu W, Tang Y. Biosens Bioelectron, 2017, 1: 602–609
Chen S, Li H, Hou P. Sens Actuat B-Chem, 2018, 1: 1086–1092
Zhang Y, Huang X, Liu W, Zhang G, Zhang D, Jiang X. Sci China Chem, 2016, 1: 106–113
Chen L, Wu D, Lim CS, Kim D, Nam SJ, Lee W, Kim G, Kim HM, Yoon J. Chem Commun, 2017, 1: 4791–4794
Xu L, Ni L, Sun L, Zeng F, Wu S. Analyst, 2019, 1: 6570–6577
Reja SI, Sharma N, Gupta M, Bajaj P, Bhalla V, Parihar RD, Ohri P, Kaur G, Kumar M. Chem Eur J, 2017, 1: 9872–9878
Shi B, Ren N, Gu L, Xu G, Wang R, Zhu T, Zhu Y, Fan C, Zhao C, Tian H. Angew Chem Int Ed, 2019, 1: 16826–16830
Xu G, Yan Q, Lv X, Zhu Y, Xin K, Shi B, Wang R, Chen J, Gao W, Shi P, Fan C, Zhao C, Tian H. Angew Chem Int Ed, 2018, 1: 3626–3630
Zhao C, Zhang X, Li K, Zhu S, Guo Z, Zhang L, Wang F, Fei Q, Luo S, Shi P, Tian H, Zhu WH. J Am Chem Soc, 2015, 1: 8490–8498
Yang Y, Lei Y, Zhang X, Zhang S. Talanta, 2016, 1: 190–196
Wang P, Zhang C, Liu HW, Xiong M, Yin SY, Yang Y, Hu XX, Yin X, Zhang XB, Tan W. Chem Sci, 2017, 1: 8214–8220
Li X, Zhao H, Ji Y, Yin C, Li J, Yang Z, Tang Y, Zhang Q, Fan Q, Huang W. ACS Appl Mater Interfaces, 2018, 1: 39544–39556
Zhang X, Tan H, Yan Y, Hang Y, Yu F, Qu X, Hua J. J Mater Chem B, 2017, 1: 2172–2180
Cao T, Teng Z, Gong D, Qian J, Liu W, Iqbal K, Qin W, Guo H. Talanta, 2019, 1: 185–192
Li DP, Zhang JF, Cui J, Ma XF, Liu JT, Miao JY, Zhao BX. Sens Actuat B-Chem, 2016, 1: 231–238
Gao J, Li Q, Wang C, Tan H. Sens Actuat B-Chem, 2017, 1: 27–33
Yang G, Zhang J, Zhu S, Wang Y, Feng X, Yan M, Yu J. Sens Actuat B-Chem, 2018, 1: 51–57
Youssef S, Zhang S, Ai H. ACS Sens, 2019, 1: 1626–1632
Chen M, Chen R, Shi Y, Wang J, Cheng Y, Li Y, Gao X, Yan Y, Sun JZ, Qin A, Kwok RTK, Lam JWY, Tang BZ. Adv Funct Mater, 2018, 28: 28
Feng X, Zhang T, Liu JT, Miao JY, Zhao BX. Chem Commun, 2016, 1: 3131–3134
Zhou L, Lu D, Wang Q, Liu S, Lin Q, Sun H. Biosens Bioelectron, 2017, 1: 699–705
Yuan L, Lin W, Zheng K, He L, Huang W. Chem Soc Rev, 2013, 1: 622–661
Wang R, Yu F, Chen L, Chen H, Wang L, Zhang W. Chem Commun, 2012, 1: 11757–11759
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Chem Soc Rev, 2018, 1: 2873–2920
Wang X, Sun J, Zhang W, Ma X, Lv J, Tang B. Chem Sci, 2013, 1: 2551–2556
Wang B, Li P, Yu F, Chen J, Qu Z, Han K. Chem Commun, 2013, 1: 5790–5792
Wu L, Sun Y, Sugimoto K, Luo Z, Ishigaki Y, Pu K, Suzuki T, Chen HY, Ye D. J Am Chem Soc, 2018, 1: 16340–16352
Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH. Mol Cell, 2012, 1: 13–24
Umezawa K, Kamiya M, Urano Y. Angew Chem Int Ed, 2018, 1: 9346–9350
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21922406, 21775071, 21632008), the Natural Science Foundation of Jiangsu Province (BK20190055), the Fundamental Research Funds for the Central Universities (020514380185) and Excellent Research Program of Nanjing University (ZYJH004).
Author information
Authors and Affiliations
Corresponding author
Additional information
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Wu, L., Zeng, W., Feng, L. et al. An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo. Sci. China Chem. 63, 741–750 (2020). https://doi.org/10.1007/s11426-019-9689-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-019-9689-4