Skip to main content
Log in

17.1%-Efficiency organic photovoltaic cell enabled with two higher-LUMO-level acceptor guests as the quaternary strategy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Quaternary blended organic solar cells utilize four blended material components (one donor plus three acceptors, two donors and two acceptors, or three donors plus one acceptor) as the active layer materials. The use of four material components allows us to have more material selections and more mechanism choices to improve the photon-to-electron conversion efficiency. In this contribution, we present a new case of quaternary material system, that shows 17.1% efficiency obtained by adding IDIC and PC71BM as the guest acceptors of the host binary of PM6:Y6. The lowest unoccupied molecular orbital (LUMO) levels of IDIC and PC71BM are both higher than that of Y6, which is one reason to obtain increased open-circuit voltage (Voc) in the quaternary device. Upon introduction of IDIC and PC71BM as the acceptor guests, the hole and electron mobilities are both increased, which contributes to the increased short-circuit current-density (Jsc). Effects of the weight ratios of the three acceptor components are investigated, which demonstrates that the increased hole and electron mobilities, the accelerated hole-transfer, and the reduced monomolecular recombination are the factors contributing to the increased Jsc and fill-factor. This case of quaternary device demonstrates the applicability of the quaternary strategy in increasing the device functions and hence the efficiencies in the field of organic photovoltaic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  2. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  3. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Article  Google Scholar 

  4. Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H. Energy Environ Sci, 2019, 3328–3337

  5. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    Article  Google Scholar 

  6. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441

    Article  Google Scholar 

  7. Li K, Wu Y, Tang Y, Pan M-, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728

    Article  Google Scholar 

  8. Chang Y, Lau TK, Pan MA, Lu X, Yan H, Zhan C. Mater Horiz, 2019, 6: 2094–2102

    Article  CAS  Google Scholar 

  9. Ma Y, Zhou X, Cai D, Tu Q, Ma W, Zheng Q. Mater Horiz, 2020, 5: 117–124

    Article  Google Scholar 

  10. Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Article  Google Scholar 

  11. Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210

    Article  Google Scholar 

  12. Pan MA, Lau TK, Tang Y, Wu YC, Liu T, Li K, Chen MC, Lu X, Ma W, Zhan C. J Mater Chem A, 2019, 7: 20713–20722

    Article  CAS  Google Scholar 

  13. Honda S, Ohkita H, Benten H, Ito S. Chem Commun, 2010, 46: 6596–6598

    Article  CAS  Google Scholar 

  14. Ameri T, Min J, Li N, Machui F, Baran D, Forster M, Schottler KJ, Dolfen D, Scherf U, Brabec CJ. Adv Energy Mater, 2012, 2: 1198–1202

    Article  CAS  Google Scholar 

  15. Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716–722

    Article  CAS  Google Scholar 

  16. Yang YM, Chen W, Dou L, Chang WH, Duan HS, Bob B, Li G, Yang Y. Nat Photon, 2015, 9: 190–198

    Article  CAS  Google Scholar 

  17. Zhong L, Gao L, Bin H, Hu Q, Zhang ZG, Liu F, Russell TP, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1602215

    Article  Google Scholar 

  18. Benten H, Nishida T, Mori D, Xu H, Ohkita H, Ito S. Energy Environ Sci, 2016, 9: 135–140

    Article  CAS  Google Scholar 

  19. Cheng P, Wang J, Zhang Q, Huang W, Zhu J, Wang R, Chang SY, Sun P, Meng L, Zhao H, Cheng HW, Huang T, Liu Y, Wang C, Zhu C, You W, Zhan X, Yang Y. Adv Mater, 2018, 30: 1801501

    Article  Google Scholar 

  20. Wu W, Zhang G, Xu X, Wang S, Li Y, Peng Q. Adv Funct Mater, 2018, 28: 1707493

    Article  Google Scholar 

  21. Felekidis N, Wang E, Kemerink M. Energy Environ Sci, 2016, 9: 257–266

    Article  CAS  Google Scholar 

  22. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369

    Article  CAS  Google Scholar 

  23. Chang Y, Zhang X, Tang Y, Gupta M, Su D, Liang J, Yan D, Li K, Guo X, Ma W, Yan H, Zhan C. Nano Energy, 2019, 64: 103934

    Article  CAS  Google Scholar 

  24. Chen H, Guo Y, Chao P, Liu L, Chen W, Zhao D, He F. Sci China Chem, 2019, 62: 238–244

    Article  CAS  Google Scholar 

  25. Nian L, Kan Y, Wang H, Gao K, Xu B, Rong Q, Wang R, Wang J, Liu F, Chen J, Zhou G, Russell TP, Jen AKY. Energy Environ Sci, 2018, 11: 3392–3399

    Article  CAS  Google Scholar 

  26. Su W, Fan Q, Guo X, Meng X, Bi Z, Ma W, Zhang M, Li Y. Nano Energy, 2017, 38: 510–517

    Article  CAS  Google Scholar 

  27. Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J. ACS Energy Lett, 2018, 3: 555–561

    Article  CAS  Google Scholar 

  28. Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005

    Article  Google Scholar 

  29. Liu T, Luo Z, Fan Q, Zhang G, Zhang L, Gao W, Guo X, Ma W, Zhang M, Yang C, Li Y, Yan H. Energy Environ Sci, 2018, 11: 3275–3282

    Article  CAS  Google Scholar 

  30. Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176–8183

    Article  CAS  Google Scholar 

  31. Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427–436

    Article  Google Scholar 

  32. Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395

    Article  CAS  Google Scholar 

  33. Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154

    Article  Google Scholar 

  34. Zhang Z, Ding Z, Jones DJ, Wong WWH, Kan B, Bi Z, Wan X, Ma W, Chen Y, Long X, Dou C, Liu J, Wang L. Sci China Chem, 2018, 61: 1025–1033

    Article  CAS  Google Scholar 

  35. Li W, Yan D, Liu F, Russell T, Zhan C, Yao J. Sci China Chem, 2018, 61: 1609–1618

    Article  CAS  Google Scholar 

  36. Yan D, Xin J, Li W, Liu S, Wu H, Ma W, Yao J, Zhan C. ACS Appl Mater Interfaces, 2019, 11: 766–773

    Article  CAS  Google Scholar 

  37. Shen F, Yan D, Li W, Meng H, Huang J, Li X, Xu J, Zhan C. Mater Chem Front, 2019, 3: 301–307

    Article  CAS  Google Scholar 

  38. Liu L, Chen H, Chen W, He F. J Mater Chem A, 2019, 7: 7815–7822

    Article  CAS  Google Scholar 

  39. Bi Z, Zhu Q, Xu X, Naveed HB, Sui X, Xin J, Zhang L, Li T, Zhou K, Liu X, Zhan X, Ma W. Adv Funct Mater, 2019, 29: 1806804

    Article  Google Scholar 

  40. Li W, Liu W, Zhang X, Yan D, Liu F, Zhan C. Macromol Rapid Commun, 2019, 40: 1900353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91433202, 21773262, 21327805) and Taishan Scholars Program of Shandong Province (tsqn201812101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Li, Hongbing Fu or Chuanlang Zhan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9668_MOESM1_ESM.pdf

17.1%-Efficiency Organic Photovoltaic Cell Enabled with Two Higher-LUMO-Level Acceptor Guests as the Quaternary Strategy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Wu, Y., Li, X. et al. 17.1%-Efficiency organic photovoltaic cell enabled with two higher-LUMO-level acceptor guests as the quaternary strategy. Sci. China Chem. 63, 490–496 (2020). https://doi.org/10.1007/s11426-019-9668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9668-8

Keywords

Navigation