Skip to main content
Log in

Ni-catalyzed direct alcoholysis of N-acylpyrrole-type tertiary amides under mild conditions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

N-Acylpyrrole-type amides are a class of versatile building blocks in asymmetric synthesis. We report that by employing Ni(COD)2/2,2′-bipyridine (5 mol%) catalytic system, the direct, catalytic alcoholysis of N-acylpyrrole-type aromatic and aliphatic amides with both primary and secondary alcohols can be achieved efficiently under very mild conditions (rt, 1 h) even at gram scale. By increasing the catalyst loading to 10 mol%, prolonging reaction time (18 h), and/or elevating reaction temperature to 50 °C/80 °C, the reaction could be extended to both complex and hindered N-acylpyrroles as well as to N-acylpyrazoles, Nacylindoles, and to other (functionalized) primary and secondary alcohols. In all cases, only 1.5 equiv. of alcohol were used. The value of the method has been demonstrated by the racemization-free, catalytic alcoholysis of chiral amides yielded from other asymmetric methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang PQ. Asymmetric Synthesis of Five-Membered Ring Heterocycles. in: Royer J, Ed. Asymmetric Synthesis of Nitrogen Heterocycles. Weinheim: Wiley-VCH, 2009. 51–94

    Google Scholar 

  2. Toyooka N. Asymmetric Synthesis of Six-Membered Ring Heterocycles. in: Royer J, Ed. Asymmetric Synthesis of Nitrogen Heterocycles. Weinheim: Wiley-VCH, 2009. 95–138

    Google Scholar 

  3. For reviews, see: (a) Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem Soc Rev, 2018}, 47}: 7899–7

    CAS  PubMed  Google Scholar 

  4. (b) Sato T, Yoritate M, Tajima H, Chida N. Org Biomol Chem, 2018, 16: 3864–3875

    CAS  PubMed  Google Scholar 

  5. (c) Huang PQ. Acta Chim Sin, 2018, 76: 357–365

    CAS  Google Scholar 

  6. (d) Pace V, Holzer W, Olofsson B. Adv Synth Catal, 2014, 356: 3697–3736

    CAS  Google Scholar 

  7. For selected recent examples, see: (a) Ye JL, Zhu YN, Geng H, Huang PQ. Sci China Chem, 2018, 61: 687–694

    CAS  Google Scholar 

  8. (b) Li LH, Niu ZJ, Liang YM. Org Biomol Chem, 2018, 16: 7792–7796

    CAS  PubMed  Google Scholar 

  9. (c) Fan T, Wang A, Li JQ, Ye JL, Zheng X, Huang PQ. Angew Chem Int Ed, 2018, 57: 10352–10356

    CAS  Google Scholar 

  10. (d) Wu DP, He Q, Chen D, Ye JL, Huang PQ. Chin J Chem, 2019, 37: 315–322

    CAS  Google Scholar 

  11. (e) Geng H, Huang PQ. Chin J Chem, 2019, 37: 811–816

    CAS  Google Scholar 

  12. (f) Xu Z, Wang XG, Wei YH, Ji KL, Zheng JF, Ye JL, Huang PQ. Org Lett, 2019, 21: 7587–7591

    CAS  PubMed  Google Scholar 

  13. For selected recent examples, see: (a) Xie LG, Dixon DJ. Chem Sci, 2017, 8: 7492–7497

    CAS  PubMed  PubMed Central  Google Scholar 

  14. (b) Ou W, Han F, Hu XN, Chen H, Huang PQ. Angew Chem Int Ed, 2018, 57: 11354–11358

    CAS  Google Scholar 

  15. (c) Takahashi Y, Sato T, Chida N. Chem Lett, 2019, 48: 1138–1141

    CAS  Google Scholar 

  16. (a) Charette AB, Chua P. Synlett, 1998, 2: 163–165

    Google Scholar 

  17. (b) Sforza S, Dossena A, Corradini R, Virgili E, Marchelli R. Tetrahedron Lett, 1998, 39: 711–714

    CAS  Google Scholar 

  18. (a) Hie L, Nathel NFF, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature, 2015, 524: 79–83

    CAS  PubMed  PubMed Central  Google Scholar 

  19. (b) Ruider SA, Maulide N. Angew Chem Int Ed, 2015, 54: 13856–13858

    CAS  Google Scholar 

  20. (c) Dander JE, Weires NA, Garg NK. Org Lett, 2016, 18: 3934–3936

    CAS  PubMed  PubMed Central  Google Scholar 

  21. (d) Weires NA, Caspi DD, Garg NK. ACS Catal, 2017, 7: 4381–4385

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hie L, Baker EL, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Angew Chem Int Ed, 2016, 55: 15129–15132

    CAS  Google Scholar 

  23. For mild, catalytic transformation of special amides, see: (a) Adachi S, Kumagai N, Shibasaki M. Synlett, 2018, 29: 301–305

    CAS  Google Scholar 

  24. (b) Deguchi T, Xin HL, Morimoto H, Ohshima T. ACS Catal, 2017, 7: 3157–3161

    CAS  Google Scholar 

  25. (c) Brö hmer MC, Mundinger S, Brä se S, Bannwarth W.} Angew Chem Int Ed, 2011, 50: 6175–6177

    Google Scholar 

  26. For reviews see: (a) Goldys AM, McErlean CSP. Eur J Org Chem, 2012, 10: 1877–1888

    Google Scholar 

  27. (b) Desimoni G, Faita G, Quadrelli P. Chem Rev, 2015, 115: 9922–9980

    CAS  PubMed  Google Scholar 

  28. For selected examples see: (c) Lee SD, Brook MA, Chan TH. Tetrahedron Lett, 1983, 24: 1569–1572

    CAS  Google Scholar 

  29. (d) Evans DA, Borg G, Scheidt KA. Angew Chem Int Ed, 2002, 41: 3188–3191

    CAS  Google Scholar 

  30. (e) Hodous BL, Fu GC. J Am Chem Soc, 2002, 124: 10006–10007

    CAS  PubMed  Google Scholar 

  31. (f) Park SY, Morimoto H, Matsunaga S, Shibasaki M. Tetrahedron Lett, 2007, 48: 2815–2818

    CAS  Google Scholar 

  32. (g) Lundin PM, Fu GC. J Am Chem Soc, 2010, 132: 11027–11029

    CAS  PubMed  PubMed Central  Google Scholar 

  33. (h) Tan B, Hernández-Torres G, Barbas CF III. Angew Chem Int Ed, 2012, 51: 5381–5385

    CAS  Google Scholar 

  34. (i) Suo JJ, Du J, Liu QR, Chen D, Ding CH, Peng Q, Hou XL. Org Lett, 2017, 19: 6658–6661

    CAS  PubMed  Google Scholar 

  35. (j) Castoldi L, Holzer W, Langer T, Pace V. Chem Commun, 2017, 53: 9498–9501

    CAS  Google Scholar 

  36. (k) Uraguchi D, Yoshioka K, Ooi T. Nat Commun, 2017, 8: 14793

  37. (a) Sibi MP, Shay JJ, Ji J. Tetrahedron Lett, 1997, 38: 5955–5958

    CAS  Google Scholar 

  38. (b) Li P, Hu X, Dong XQ, Zhang X. Chem Commun, 2016, 52: 11677–11680

    CAS  Google Scholar 

  39. (c) Huo H, Harms K, Meggers E. J Am Chem Soc, 2016, 138: 6936–6939

    CAS  PubMed  Google Scholar 

  40. (d) Lin X, Tang Y, Yang W, Tan F, Lin L, Liu X, Feng X. J Am Chem Soc, 2018, 140: 3299–3305

    CAS  PubMed  Google Scholar 

  41. Alexy EJ, Fulton TJ, Zhang H, Stoltz BM. Chem Sci, 2019, 10: 5996–6000

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 351: 681–684

    CAS  PubMed  PubMed Central  Google Scholar 

  43. For related reviews, see: (a) Adachi S, Kumagai N, Shibasaki M. Tetrahedron Lett, 2018}, 59}: 1147–1

    CAS  Google Scholar 

  44. (b) Wang Q, Su Y, Li L, Huang H. Chem Soc Rev, 2016, 45: 1257–1272

    CAS  PubMed  Google Scholar 

  45. For selected examples, see: (c) Liu X, Hsiao CC, Guo L, Rueping M. Org Lett, 2018, 20: 2976–2979; and references cited therein

    CAS  PubMed  Google Scholar 

  46. for selected examples on catalytic transformation of N-acylpyrroles, see: (d) Huang PQ, Chen H. Chem Commun, 2017, 53: 12584–12587

    CAS  Google Scholar 

  47. (e) Morioka T, Nakatani S, Sakamoto Y, Kodama T, Ogoshi S, Chatani N, Tobisu M. Chem Sci, 2019, 10: 6666–6671

    CAS  PubMed  PubMed Central  Google Scholar 

  48. For selected reviews, see: (a) Murphy JJ, Melchiorre P. Nature, 2015, 524: 297–298

    CAS  PubMed  Google Scholar 

  49. (b) Tobisu M, Chatani N. Acc Chem Res, 2015, 48: 1717–1726

    CAS  PubMed  Google Scholar 

  50. Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21931010), the National Key Research and Development Program of China (2017YFA0207302), the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Qiang Huang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, DH. & Huang, PQ. Ni-catalyzed direct alcoholysis of N-acylpyrrole-type tertiary amides under mild conditions. Sci. China Chem. 63, 370–376 (2020). https://doi.org/10.1007/s11426-019-9665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9665-5

Keywords

Navigation