Skip to main content
Log in

Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have recently emerged as a new class of photocatalysts. However, integrated design is crucial to maximizing the performance of COF-incorporating photocatalytic systems. Herein, we compare two strategies of installing earth-abundant metal-based catalytic centers into the matrice of a 2D COF named NUS-55. Compared to NUS-55(Co) prepared from the post-synthetic metalation of coordination sites within the COF, the molecular co-catalyst impregnated NUS-55/[Co(bpy)3]Cl2 achieves a seven-fold improvement in visible light-driven H2 evolution rate to 2,480 µmol g−1 h−1, with an apparent quantum efficiency (AQE) of 1.55% at 450 nm. Our results show that the rational design of molecular anchoring sites in COFs for the introduction of catalytic metal sites can be a viable strategy for the development of highly efficient photocatalysts with enhanced stability and photocatalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Science, 2005, 310: 1166–1170

    Article  Google Scholar 

  2. Cooper AI. Adv Mater, 2009, 21: 1291–1295

    Article  CAS  Google Scholar 

  3. Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science, 2017, 357: 673–676

    Article  CAS  Google Scholar 

  4. Ma T, Kapustin EA, Yin SX, Liang L, Zhou Z, Niu J, Li LH, Wang Y, Su J, Li J, Wang X, Wang WD, Wang W, Sun J, Yaghi OM. Science, 2018, 361: 48–52

    Article  CAS  Google Scholar 

  5. Furukawa H, Yaghi OM. J Am Chem Soc, 2009, 131: 8875–8883

    Article  CAS  Google Scholar 

  6. Huang N, Chen X, Krishna R, Jiang D. Angew Chem Int Ed, 2015, 54: 2986–2990

    Article  CAS  Google Scholar 

  7. Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV. ACS Energy Lett, 2018, 3: 400–409

    Article  CAS  Google Scholar 

  8. Lu M, Li Q, Liu J, Zhang FM, Zhang L, Wang JL, Kang ZH, Lan YQ. Appl Catal B-Environ, 2019, 254: 624–633

    Article  CAS  Google Scholar 

  9. Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2016, 138: 12332–12335

    Article  CAS  Google Scholar 

  10. Sun Q, Aguila B, Perman J, Ivanov AS, Bryantsev VS, Earl LD, Abney CW, Wojtas L, Ma S. Nat Commun, 2018, 9: 1644

    Article  Google Scholar 

  11. Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W. J Am Chem Soc, 2016, 138: 3031–3037

    Article  CAS  Google Scholar 

  12. Lin G, Ding H, Yuan D, Wang B, Wang C. J Am Chem Soc, 2016, 138: 3302–3305

    Article  CAS  Google Scholar 

  13. Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir SM, Banerjee R. J Am Chem Soc, 2014, 136: 6570–6573

    Article  CAS  Google Scholar 

  14. DeBlase CR, Silberstein KE, Truong TT, Abruña HD, Dichtel WR. J Am Chem Soc, 2013, 135: 16821–16824

    Article  CAS  Google Scholar 

  15. Cai P, Peng X, Huang J, Jia J, Hu X, Wen Z. Sci China Chem, 2019, 62: 385–392

    Article  CAS  Google Scholar 

  16. Vyas VS, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz JP, Lotsch BV. Adv Mater, 2016, 28: 8749–8754

    Article  CAS  Google Scholar 

  17. Zhang K, Guo W, Liang Z, Zou R. Sci China Chem, 2019, 62: 417–429

    Article  CAS  Google Scholar 

  18. Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585

    Article  Google Scholar 

  19. Huang N, Wang P, Jiang D. Nat Rev Mater, 2016, 1: 16068

    Article  CAS  Google Scholar 

  20. Zhang T, Lin W. Chem Soc Rev, 2014, 43: 5982–5993

    Article  CAS  Google Scholar 

  21. Wang S, Wang X. Small, 2015, 11: 3097–3112

    Article  CAS  Google Scholar 

  22. Eckenhoff WT. Coord Chem Rev, 2018, 373: 295–316

    Article  CAS  Google Scholar 

  23. Artero V, Chavarot-Kerlidou M, Fontecave M. Angew Chem Int Ed, 2011, 50: 7238–7266

    Article  CAS  Google Scholar 

  24. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat Commun, 2015, 6: 8508

    Article  CAS  Google Scholar 

  25. Banerjee T, Haase F, Savasci G, Gottschling K, Ochsenfeld C, Lotsch BV. J Am Chem Soc, 2017, 139: 16228–16234

    Article  CAS  Google Scholar 

  26. Romero J, Rodriguez-San-Miguel D, Ribera A, Mas-Ballesté R, Otero TF, Manet I, Licio F, Abellán G, Zamora F, Coronado E. J Mater Chem A, 2017, 5: 4343–4351

    Article  CAS  Google Scholar 

  27. Shinde DB, Aiyappa HB, Bhadra M, Biswal BP, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J Mater Chem A, 2016, 4: 2682–2690

    Article  CAS  Google Scholar 

  28. Sun Q, Aguila B, Perman J, Nguyen N, Ma S. J Am Chem Soc, 2016, 138: 15790–15796

    Article  CAS  Google Scholar 

  29. Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S. Chem Mater, 2016, 28: 4375–4379

    Article  CAS  Google Scholar 

  30. Bhadra M, Sasmal HS, Basu A, Midya SP, Kandambeth S, Pachfule P, Balaraman E, Banerjee R. ACS Appl Mater Interfaces, 2017, 9: 13785–13792

    Article  CAS  Google Scholar 

  31. Ma X, Zhao Y. Chem Rev, 2015, 115: 7794–7839

    Article  CAS  Google Scholar 

  32. Dong J, Wang M, Zhang P, Yang S, Liu J, Li X, Sun L. J Phys Chem C, 2011, 115: 15089–15096

    Article  CAS  Google Scholar 

  33. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv Mater, 2011, 23: 2367–2371

    Article  CAS  Google Scholar 

  34. Stegbauer L, Schwinghammer K, Lotsch BV. Chem Sci, 2014, 5: 2789–2793

    Article  CAS  Google Scholar 

  35. Zou Z, Ye J, Sayama K, Arakawa H. Nature, 2001, 414: 625–627

    Article  CAS  Google Scholar 

  36. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Science, 2015, 347: 970–974

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Singapore (NRF2018-NRF-ANR007 POCEMON), the Ministry of Education-Singapore (MOE AcRF Tier 1 R-279-000-540-114, Tier 2 MOE2018-T2-2-148), the Agency for Science, Technology and Research (IRG A1783c0015, IAF-PP A1789a0024), and the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-Aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J., Peh, S.B. et al. Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution. Sci. China Chem. 63, 192–197 (2020). https://doi.org/10.1007/s11426-019-9658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9658-1

Keywords

Navigation