Skip to main content
Log in

Near-infrared electrochromism of multilayer films of a cyclometalated diruthenium complex prepared by layer-by-layer deposition on metal oxide substrates

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A cyclometalated diruthenium complex 2 bridged by 1,2,4,5-tetra(pyrid-2-yl)benzene with six carboxylic acid groups at two ends was synthesized. Monolayer and multilayer films FTO/TiO2/(2)n(Zr) (n=1,2) and FTO/SnO2:Sb/(2)n(Zr) (n=1–4) have been prepared via interfacial layer-by-layer coordination assembly of 2 with zirconium(IV) ions. All films show two consecutive redox couples in the potential range between 0 and +1.0 V vs. Ag/AgCl. These films exhibit reversible near-infrared electrochromism upon switching of redox potential. The response time of the films on SnO2:Sb is around a few seconds, while that on TiO2 is around a few tens of seconds. The film deposition cycles were found to have a great impact on the electrochromic performance. Among six films examined, the two-layered film on SnO2:Sb displays the best balanced performance with a contrast ratio of 56% at 1,150 nm and good cyclic stability (9% loss of contrast ratio after 1,000 continuous double-potential-switching cycles), which is superior to that of the previously reported electropolymerized films of a related diruthenium complex with the same bridging ligand. In addition, the X-ray photoelectron spectroscopy, scanning electron microscopy, and electron transfer mechanism of these films have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F. Chem Rev, 2016, 116: 14828–14867

    CAS  PubMed  Google Scholar 

  2. Xiao FX, Pagliaro M, Xu YJ, Liu B. Chem Soc Rev, 2016, 45: 3088–3121

    CAS  PubMed  Google Scholar 

  3. Zhang L, Sun J. Chem Commun, 2009, 299: 3901

    Google Scholar 

  4. Yang SY, Rubner MF. J Am Chem Soc, 2002, 124: 2100–2101

    CAS  Google Scholar 

  5. Li M, Ishihara S, Akada M, Liao M, Sang L, Hill JP, Krishnan V, Ma Y, Ariga K. J Am Chem Soc, 2011, 133: 7348–7351

    CAS  PubMed  Google Scholar 

  6. Kang S, Wang L, Zhang J, Du J, Li M, Chen Q. ACS Appl Mater Interfaces, 2017, 9: 32179–32183

    CAS  PubMed  Google Scholar 

  7. de Ruiter G, Lahav M, van der Boom ME. Acc Chem Res, 2014, 47: 3407–3416

    CAS  PubMed  Google Scholar 

  8. Sakamoto R, Wu KH, Matsuoka R, Maeda H, Nishihara H. Chem Soc Rev, 2015, 44: 7698–7714

    CAS  PubMed  Google Scholar 

  9. Heinrich T, Traulsen CHH, Holzweber M, Richter S, Kunz V, Kastner SK, Krabbenborg SO, Huskens J, Unger WES, Schalley CA. J Am Chem Soc, 2015, 137: 4382–4390

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maeda H, Sakamoto R, Nishihara H. Coord Chem Rev, 2017, 346: 139–149

    CAS  Google Scholar 

  11. Mondal PC, Singh V, Zharnikov M. Acc Chem Res, 2017, 50: 2128–2138

    CAS  PubMed  Google Scholar 

  12. Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM. Langmuir, 2005, 21: 2042–2050

    CAS  PubMed  Google Scholar 

  13. Du N, Zhang H, Chen B, Ma X, Liu Z, Wu J, Yang D. Adv Mater, 2007, 19: 1641–1645

    CAS  Google Scholar 

  14. Balgley R, Shankar S, Lahav M, van der Boom ME. Angew Chem Int Ed, 2015, 54: 12457–12462

    CAS  Google Scholar 

  15. DeLongchamp DM, Kastantin M, Hammond PT. Chem Mater, 2003, 15: 1575–1586

    CAS  Google Scholar 

  16. Bucur CB, Sui Z, Schlenoff JB. J Am Chem Soc, 2006, 128: 13690–13691

    CAS  PubMed  Google Scholar 

  17. Cui M, Ng WS, Wang X, Darmawan P, Lee PS. Adv Funct Mater, 2015, 25: 401–408

    CAS  Google Scholar 

  18. Chen BH, Kao SY, Hu CW, Higuchi M, Ho KC, Liao YC. ACS Appl Mater Interfaces, 2015, 7: 25069–25076

    CAS  PubMed  Google Scholar 

  19. Higuchi M. J Mater Chem C, 2014, 2: 9331–9341

    CAS  Google Scholar 

  20. Wu X, Zheng J, Xu C. Sci China Chem, 2017, 60: 84–89

    CAS  Google Scholar 

  21. Lahav M, van der Boom ME. Adv Mater, 2018, 30: 1706641

    Google Scholar 

  22. Elool Dov N, Shankar S, Cohen D, Bendikov T, Rechav K, Shimon LJW, Lahav M, van der Boom ME. J Am Chem Soc, 2017, 139: 11471–11481

    CAS  PubMed  Google Scholar 

  23. Tieke B. Curr Opin Colloid Interface Sci, 2011, 16: 499

    CAS  Google Scholar 

  24. Gong ZL, Yao CJ, Shao JY, Nie HJ, Tang JH, Zhong YW. Sci China Chem, 2017, 60: 583–590

    CAS  Google Scholar 

  25. Tang JH, Cai Z, Yan D, Tang K, Shao JY, Zhan C, Wang D, Zhong YW, Wan LJ, Yao J. J Am Chem Soc, 2018, 140: 12337–12340

    CAS  PubMed  Google Scholar 

  26. Chuang YW, Yen HJ, Wu JH, Liou GS. ACS Appl Mater Interfaces, 2014, 6: 3594–3599

    CAS  PubMed  Google Scholar 

  27. Hsiao SH, Wang HM, Liao SH. Polym Chem, 2014, 5: 2473

    CAS  Google Scholar 

  28. Hsiao SH, Lin SW. J Mater Chem C, 2016, 4: 1271–1280

    CAS  Google Scholar 

  29. Ionescu A, Aiello I, La Deda M, Crispini A, Ghedini M, De Santo MP, Godbert N. ACS Appl Mater Interfaces, 2016, 8: 12272–12281

    CAS  PubMed  Google Scholar 

  30. Yao B, Chen F, Jiang H, Zhang J, Wan X. Electrochim Acta, 2015, 166: 73–81

    CAS  Google Scholar 

  31. Chen X, Qiao W, Liu B, Ren J, Wang Z. Sci China Chem, 2017, 60: 77–83

    CAS  Google Scholar 

  32. Yen HJ, Liou GS. Polym Chem, 2018, 9: 3001–3018

    CAS  Google Scholar 

  33. Kahlfuss C, Métay E, Duclos MC, Lemaire M, Milet A, Saint-Aman E, Bucher C. Chem Eur J, 2015, 21: 2090–2106

    CAS  PubMed  Google Scholar 

  34. Nojo W, Ishigaki Y, Takeda T, Akutagawa T, Suzuki T. Chem Eur J, 2019, 25: 7759–7765

    CAS  PubMed  Google Scholar 

  35. Yao CJ, Zhong YW, Nie HJ, Abruña HD, Yao J. J Am Chem Soc, 2011, 133: 20720–20723

    CAS  PubMed  Google Scholar 

  36. Li ZJ, Shao JY, Zhong YW. Inorg Chem, 2017, 56: 8538–8546

    CAS  PubMed  Google Scholar 

  37. Li ZJ, Shao JY, Wu SH, Zhong YW. Dalton Trans, 2019, 48: 2197–2205

    CAS  PubMed  Google Scholar 

  38. Argazzi R, Murakami Iha NY, Zabri H, Odobel F, Bignozzi CA. Coord Chem Rev, 2004, 248: 1299–1316

    CAS  Google Scholar 

  39. Lee H, Kepley LJ, Hong HG, Akhter S, Mallouk TE. J Phys Chem, 1988, 92: 2597–2601

    CAS  Google Scholar 

  40. Hong HG, Sackett DD, Mallouk TE. Chem Mater, 1991, 3: 521–527

    CAS  Google Scholar 

  41. Haga M, Kobayashi K, Terada K. Coord Chem Rev, 2007, 251: 2688–2701

    CAS  Google Scholar 

  42. Nagashima T, Ozawa H, Suzuki T, Nakabayashi T, Kanaizuka K, Haga MA. Chem Eur J, 2016, 22: 1658–1667

    CAS  PubMed  Google Scholar 

  43. Kaliginedi V, Ozawa H, Kuzume A, Maharajan S, Pobelov IV, Kwon NH, Mohos M, Broekmann P, Fromm KM, Haga MA, Wandlowski T. Nanoscale, 2015, 7: 17685–17692

    CAS  PubMed  Google Scholar 

  44. Hanson K, Torelli DA, Vannucci AK, Brennaman MK, Luo H, Alibabaei L, Song W, Ashford DL, Norris MR, Glasson CRK, Concepcion JJ, Meyer TJ. Angew Chem Int Ed, 2012, 51: 12782–12785

    CAS  Google Scholar 

  45. Ogunsolu OO, Wang JC, Hanson K. ACS Appl Mater Interfaces, 2015, 7: 27730–27734

    CAS  PubMed  Google Scholar 

  46. Yao CJ, Zhong YW, Yao J. J Am Chem Soc, 2011, 133: 15697–15706

    CAS  PubMed  Google Scholar 

  47. Robson KCD, Koivisto BD, Yella A, Sporinova B, Nazeeruddin MK, Baumgartner T, Grätzel M, Berlinguette CP. Inorg Chem, 2011, 50: 5494–5508

    CAS  PubMed  Google Scholar 

  48. Green ANM, Palomares E, Haque SA, Kroon JM, Durrant JR. J Phys Chem B, 2005, 109: 12525–12533

    CAS  PubMed  Google Scholar 

  49. Kalyanasundaram K, Grätzel M. Coord Chem Rev, 1998, 177: 347–414

    CAS  Google Scholar 

  50. Ogunsolu OO, Murphy IA, Wang JC, Das A, Hanson K. ACS Appl Mater Interfaces, 2016, 8: 28633–28640

    CAS  PubMed  Google Scholar 

  51. Hu K, Robson KCD, Beauvilliers EE, Schott E, Zarate X, Arratia-Perez R, Berlinguette CP, Meyer GJ. J Am Chem Soc, 2014, 136: 1034–1046

    CAS  PubMed  Google Scholar 

  52. DiMarco BN, Motley TC, Balok RS, Li G, Siegler MA, O’Donnell RM, Hu K, Meyer GJ. J Phys Chem C, 2016, 120: 14226–14235

    CAS  Google Scholar 

  53. Wang JC, Hill SP, Dilbeck T, Ogunsolu OO, Banerjee T, Hanson K. Chem Soc Rev, 2018, 47: 104–148

    CAS  PubMed  Google Scholar 

  54. Harada W, Hirahara M, Togashi T, Ishizaki M, Kurihara M, Haga MA, Kanaizuka K. Langmuir, 2018, 34: 1321–1326

    CAS  PubMed  Google Scholar 

  55. Kanaizuka K, Sasaki S, Nakabayashi T, Masunaga H, Ogawa H, Hikima T, Takata M, Haga M. Langmuir, 2015, 31: 10327–10330

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21872154), Beijing National Science Foundation (2191003), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wu Zhong.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9640_MOESM1_ESM.pdf

Near-infrared electrochromism of multilayer films of a cyclometalated diruthenium complex prepared by layer-by-layer deposition on metal oxide substrates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZJ., Yao, CJ. & Zhong, YW. Near-infrared electrochromism of multilayer films of a cyclometalated diruthenium complex prepared by layer-by-layer deposition on metal oxide substrates. Sci. China Chem. 62, 1675–1685 (2019). https://doi.org/10.1007/s11426-019-9640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9640-1

Keywords

Navigation