Skip to main content

A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water

Abstract

The hydrogenation of carbon dioxide (CO2) is one of important processes to effectively convert and utilize CO2, which is also regarded as the key step at the industrial methanol synthesis. Water is likely to play an important role in this process, but it still remains elusive. To systematically understand its influence, here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211) surface between in the absence and presence of water based on microkinetic simulations upon density functional theory (DFT) calculations. The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed. It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH, promoting the reverse water gas shift reaction to produce carbon monoxide (CO). It hardly influences the CO2 hydrogenation to methanol kinetically. In addition, the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC. Appl Catal, 1988, 36: 1–65

    CAS  Google Scholar 

  2. 2

    Yin X, Moss JR. Coord Chem Rev, 1999, 181: 27–59

    CAS  Google Scholar 

  3. 3

    Shi C, Chan K, Yoo JS, Nørskov JK. Org Process Res Dev, 2016, 20: 1424–1430

    CAS  Google Scholar 

  4. 4

    Behrens M. J Catal, 2009, 267: 24–29

    CAS  Google Scholar 

  5. 5

    Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Science, 2017, 357: eaan8210

    PubMed  Google Scholar 

  6. 6

    Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M. Chem Ingenieur Technik, 2018, 90: 721–724

    CAS  Google Scholar 

  7. 7

    Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT. J Catal, 2013, 298: 10–17

    CAS  Google Scholar 

  8. 8

    Dietz L, Piccinin S, Maestri M. J Phys Chem C, 2015, 119: 4959–4966

    CAS  Google Scholar 

  9. 9

    Chen Y, Cheng J, Hu P, Wang H. Surf Sci, 2008, 602: 2828–2834

    CAS  Google Scholar 

  10. 10

    Garza AJ, Bell AT, Head-Gordon M. ACS Catal, 2018, 8: 1490–1499

    CAS  Google Scholar 

  11. 11

    Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA. Appl Catal, 1987, 30: 333–338

    CAS  Google Scholar 

  12. 12

    Hansen JB, Højlund Nielsen PE. Methanol synthesis. In: Knozinger GEH, Schuth F, Weitkamp J, Eds. Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 2920–2949

    Google Scholar 

  13. 13

    Liu XM, Lu GQ, Yan ZF, Beltramini J. Ind Eng Chem Res, 2003, 42: 6518–6530

    CAS  Google Scholar 

  14. 14

    Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlögl R. Science, 2012, 336: 893–897

    CAS  PubMed  Google Scholar 

  15. 15

    Grabow LC, Mavrikakis M. ACS Catal, 2011, 1: 365–384

    CAS  Google Scholar 

  16. 16

    Zhao YF, Yang Y, Mims C, Peden CHF, Li J, Mei D. J Catal, 2011, 281: 199–211

    CAS  Google Scholar 

  17. 17

    Sun X, Cao X, Hu P. Sci China Chem, 2015, 58: 553–564

    CAS  Google Scholar 

  18. 18

    Burch R, Golunski SE, Spencer MS. Catal Lett, 1990, 5: 55–60

    CAS  Google Scholar 

  19. 19

    Kattel S, Yan B, Yang Y, Chen JG, Liu P. J Am Chem Soc, 2016, 138: 12440–12450

    CAS  PubMed  Google Scholar 

  20. 20

    Klier K, Chatikavanij V, Herman RG, Simmons GW. J Catal, 1982, 74: 343–360

    CAS  Google Scholar 

  21. 21

    Parameswaran VR, Lee S, Wender I. Fuel Sci Tech Int, 1989, 7: 899–918

    CAS  Google Scholar 

  22. 22

    Liu G, Willcox D, Garland M, Kung HH. J Catal, 1984, 90: 139–146

    CAS  Google Scholar 

  23. 23

    He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 737–741

    CAS  Google Scholar 

  24. 24

    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    CAS  Google Scholar 

  25. 25

    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  26. 26

    Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    CAS  Google Scholar 

  27. 27

    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Google Scholar 

  28. 28

    Haynes WM. CRC Handbook of Chemistry and Physics. Lodon & New York: CRC Press, 2014

    Google Scholar 

  29. 29

    Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653

    CAS  Google Scholar 

  30. 30

    Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. J Am Chem Soc, 2003, 125: 3704–3705

    CAS  PubMed  Google Scholar 

  31. 31

    Liu ZP, Hu P. J Am Chem Soc, 2003, 125: 1958–1967

    CAS  PubMed  Google Scholar 

  32. 32

    Schenter GK, Mills G, Jónsson H. J Chem Phys, 1994, 101: 8964–8971

    CAS  Google Scholar 

  33. 33

    Mills G, Jónsson H, Schenter GK. Surf Sci, 1995, 324: 305–337

    CAS  Google Scholar 

  34. 34

    Henkelman G, Jónsson H. J Chem Phys, 2000, 113: 9978–9985

    CAS  Google Scholar 

  35. 35

    Cao XM, Burch R, Hardacre C, Hu P. Catal Today, 2011, 165: 71–79

    CAS  Google Scholar 

  36. 36

    Wang Z, Cao XM, Zhu J, Hu P. J Catal, 2014, 311: 469–480

    CAS  Google Scholar 

  37. 37

    Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Frei E, Varley JB, Abild-Pedersen F, Nørskov JK, Schlögl R. ChemCatChem, 2015, 7: 1105–1111

    CAS  Google Scholar 

  38. 38

    Zhang L, Shao ZJ, Cao XM, Hu P. J Phys Chem C, 2018, 122: 20337–20350

    CAS  Google Scholar 

  39. 39

    Wang Z, Liu X, Rooney DW, Hu P. Surf Sci, 2015, 640: 181–189

    CAS  Google Scholar 

  40. 40

    Rasmussen PB, Kazuta M, Chorkendorff I. Surf Sci, 1994, 318: 267–280

    CAS  Google Scholar 

  41. 41

    Hong QJ, Liu ZP. Surf Sci, 2010, 604: 1869–1876

    CAS  Google Scholar 

  42. 42

    Yang Y, Mims CA, Disselkamp RS, Peden CHF, Campbell CT. Top Catal, 2009, 52: 1440–1447

    CAS  Google Scholar 

  43. 43

    Chen CS, Wu JH, Lai TW. J Phys Chem C, 2010, 114: 15021–15028

    CAS  Google Scholar 

  44. 44

    Studt F, Abild-Pedersen F, Varley JB, Nørskov JK. Catal Lett, 2013, 143: 71–73

    CAS  Google Scholar 

  45. 45

    Nie X, Esopi MR, Janik MJ, Asthagiri A. Angew Chem Int Ed, 2013, 52: 2459–2462

    CAS  Google Scholar 

  46. 46

    Li Z, Wang J, Qu Y, Liu H, Tang C, Miao S, Feng Z, An H, Li C. ACS Catal, 2017, 7: 8544–8548

    CAS  Google Scholar 

  47. 47

    Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Gokhale AA, Dumesic JA, Mavrikakis M. J Am Chem Soc, 2008, 130: 1402–1414

    CAS  PubMed  Google Scholar 

  49. 49

    Álvarez A, Borges M, Corral-Pérez JJ, Olcina JG, Hu L, Cornu D, Huang R, Stoian D, Urakawa A. Chem Phys Chem, 2017, 18: 3135–3141

    PubMed  Google Scholar 

  50. 50

    Yin LL, Gong XQ. Sci China Chem, 2015, 58: 601–606

    CAS  Google Scholar 

  51. 51

    Yang M, Yuan H, Wang H, Hu P. Sci China Chem, 2018, 61: 457–467

    CAS  Google Scholar 

  52. 52

    Yuan H, Sun N, Chen J, Jin J, Wang H, Hu P. ACS Catal, 2018, 8: 9269–9279

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0208600), the National Natural Science Foundation of China (21673072, 21333003, 91845111), and Program of Shanghai Subject Chief Scientist (17XD1401400).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Cao or P. Hu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wang, P., Shao, Z. et al. A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water. Sci. China Chem. 62, 1686–1697 (2019). https://doi.org/10.1007/s11426-019-9639-0

Download citation

  • CO2 activation
  • microkinetic modeling
  • DFT
  • CH3OH selectivity