Skip to main content
Log in

Transformations of N-arylpropiolamides to indoline-2,3-diones and acids via C≡C triple bond oxidative cleavage and C(sp2)–H functionalization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new palladium-catalyzed oxidative conversion of N-arylpropiolamides and H2O to various indoline-2,3-diones and acids through the C≡C triple bond cleavage and C(sp2)–H functionalization is described, which is promoted by a cooperative action of catalytic CuBr2, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and O2. The method provides a practical tool for transformations of alkynes by means of a C–H functionalization strategy, which enables the formation of one C–C bond and multiple C–O bonds in a single reaction with high substrates compatibility and excellent functional group tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected reviews, see: Tsuji J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis. Chichester, UK: Wiley, 2000

  2. Willis MC. Chem Rev, 2010, 110: 725–748

    CAS  PubMed  Google Scholar 

  3. Dong G. C–C Bond Activation. Berlin, Heidelberg: Springer-Verlag, 2014

    Google Scholar 

  4. Wang T, Jiao N. Acc Chem Res, 2014, 47: 1137–1145

    CAS  PubMed  Google Scholar 

  5. Murphy SK, Park JW, Cruz FA, Dong VM. Science, 2015, 347: 56–60

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Murakami M, Chatani N. Cleavage of Carbon–Carbon Single Bonds by Transition Metals. Weinheim: Wiley-VCH Verlag GmbH, 2016

    Google Scholar 

  7. Nairoukh Z, Cormier M, Marek I. Nat Rev Chem, 2017, 1: 0035

    Google Scholar 

  8. Sivaguru P, Wang Z, Zanoni G, Bi X. Chem Soc Rev, 2019, 48: 2615–2656

    CAS  PubMed  Google Scholar 

  9. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    CAS  Google Scholar 

  10. Jennings PW, Johnson LL. Chem Rev, 1994, 94: 2241–2290

    CAS  Google Scholar 

  11. Rybtchinski B, Milstein D. Angew Chem Int Ed, 1999, 38: 870–883

    Google Scholar 

  12. Murakami M, Ito Y. Cleavage of carbon–carbon single bonds by transition metals. In: Murai S, Ed. Activation of Unreactive Bonds and Organic Synthesis. Berlin: Springer, 1999. 97–129

    Google Scholar 

  13. Sullivan BP, Smythe RS, Kober EM, Meyer TJ. J Am Chem Soc, 1982, 104: 4701–4703

    CAS  Google Scholar 

  14. O’Connor JM, Pu L. J Am Chem Soc, 1990, 112: 9013–9015

    Google Scholar 

  15. Cairns GA, Carr N, Green M, Mahon MF. Chem Commun, 1996, 8: 2431–2432

    Google Scholar 

  16. Hayashi N, Ho DM, Pascal Jr. RA. Tetrahedron Lett, 2000, 41: 4261–4264

    CAS  Google Scholar 

  17. Chamberlin RLM, Rosenfeld DC, Wolczanski PT, Lobkovsky EB. Organometallics, 2002, 21: 2724–2735

    CAS  Google Scholar 

  18. Adams H, Guio LVY, Morris MJ, Spey SE. J Chem Soc Dalton Trans, 2002, 79: 2907–2915

    Google Scholar 

  19. Moriarty RM, Penmasta R, Awasthi AK, Prakash I. J Org Chem, 1988, 53: 6124–6125

    CAS  Google Scholar 

  20. Albertin G, Antoniutti S, Bacchi A, Pelizzi G, Piasente F. Dalton Trans, 2003, 88: 2881–2888

    Google Scholar 

  21. Jun CH, Lee H, Moon CW, Hong HS. J Am Chem Soc, 2001, 123: 8600–8601

    CAS  PubMed  Google Scholar 

  22. Lee DY, Hong BS, Cho EG, Lee H, Jun CH. J Am Chem Soc, 2003, 125: 6372–6373

    CAS  PubMed  Google Scholar 

  23. Shimada T, Yamamoto Y. J Am Chem Soc, 2003, 125: 6646–6647

    CAS  PubMed  Google Scholar 

  24. Asao N, Nogami T, Lee S, Yamamoto Y. J Am Chem Soc, 2003, 125: 10921–10925

    CAS  PubMed  Google Scholar 

  25. Liu Y, Song F, Guo S. J Am Chem Soc, 2006, 128: 11332–11333

    CAS  PubMed  Google Scholar 

  26. Liu Q, Chen P, Liu G. ACS Catal, 2013, 3: 178–181

    CAS  Google Scholar 

  27. Sun J, Wang F, Hu H, Wang X, Wu H, Liu Y. J Org Chem, 2014, 79: 3992–3998

    CAS  PubMed  Google Scholar 

  28. Xie HZ, Gao Q, Liang Y, Wang HS, Pan YM. Green Chem, 2014, 16: 2132–2135

    CAS  Google Scholar 

  29. Yan H, Wang H, Li X, Xin X, Wang C, Wan B. Angew Chem Int Ed, 2015, 54: 10613–10617

    CAS  Google Scholar 

  30. Wang JY, Zhou P, Li G, Hao WJ, Tu SJ, Jiang B. Org Lett, 2017, 19: 6682–6685

    CAS  PubMed  Google Scholar 

  31. Huang Y, Yan D, Wang X, Zhou P, Wu W, Jiang H. Chem Commun, 2018, 54: 1742–1745

    CAS  Google Scholar 

  32. Wang X, He D, Huang Y, Fan Q, Wu W, Jiang H. J Org Chem, 2018, 83: 5458–5466

    CAS  PubMed  Google Scholar 

  33. Prakash R, Bora BR, Boruah RC, Gogoi S. Org Lett, 2018, 20: 2297–2300

    CAS  PubMed  Google Scholar 

  34. Lee DY, Hong BS, Cho EG, Lee H, Jun CH. J Am Chem Soc, 2003, 125: 6372–6373

    CAS  PubMed  Google Scholar 

  35. Sagadevan A, Charpe VP, Ragupathi A, Hwang KC. J Am Chem Soc, 2017, 139: 2896–2899

    CAS  PubMed  Google Scholar 

  36. Okamoto N, Sueda T, Minami H, Miwa Y, Yanada R. Org Lett, 2015, 17: 1336–1339

    CAS  PubMed  Google Scholar 

  37. Wang A, Jiang H. J Am Chem Soc, 2008, 130: 5030–5031

    CAS  PubMed  Google Scholar 

  38. Shimada T, Yamamoto Y. J Am Chem Soc, 2002, 124: 12670–12671

    CAS  PubMed  Google Scholar 

  39. Datta S, Chang CL, Yeh KL, Liu RS. J Am Chem Soc, 2003, 125: 9294–9295

    CAS  PubMed  Google Scholar 

  40. Das A, Chaudhuri R, Liu RS. Chem Commun, 2009, 37: 4046–4048

    Google Scholar 

  41. Shen T, Wang T, Qin C, Jiao N. Angew Chem Int Ed, 2013, 52: 6677–6680

    CAS  Google Scholar 

  42. Okamoto N, Ishikura M, Yanada R. Org Lett, 2013, 15: 2571–2573

    CAS  PubMed  Google Scholar 

  43. Liu B, Ning Y, Virelli M, Zanoni G, Anderson EA, Bi X. J Am Chem Soc, 2019, 141: 1593–1598

    CAS  PubMed  Google Scholar 

  44. Wu W, Jiang H. Acc Chem Res, 2012, 45: 1736–1748

    CAS  PubMed  Google Scholar 

  45. Wen Y, Zhu S, Jiang H, Wang A, Chen Z. Synlett, 2011: 1023–1027

  46. Wang A, Jiang H, Xu Q. Synlett, 2009: 929–932

  47. Chen M, Zhao MN, Zhang YD, Ren ZH, Guan ZH. Sci China Chem, 2018, 61: 695–701

    CAS  Google Scholar 

  48. Wang Y, Lan J. Sci China Chem, 2018, 61: 200–205

    CAS  Google Scholar 

  49. Zhang D, Huang Z, Lei A. Sci China Chem, 2018, 61: 1274–1277

    CAS  Google Scholar 

  50. For leading papers and selected reviews, see: Montreux A, Blanchard M. J Chem Soc Chem Commun, 1974: 786–787

  51. McCullough LG, Schrock RR. J Am Chem Soc, 1984, 106: 4067–4068

    CAS  Google Scholar 

  52. Fürstner A, Seidel G. Angew Chem Int Ed, 1998, 37: 1734–1736

    Google Scholar 

  53. Kloppenburg L, Song D, Bunz UHF. J Am Chem Soc, 1998, 120: 7973–7974

    CAS  Google Scholar 

  54. Fürstner A, Mathes C, Lehmann CW. J Am Chem Soc, 1999, 121: 9453–9454

    Google Scholar 

  55. Bunz UHF, Kloppenburg L. Angew Chem Int Ed, 1999, 38: 478–481

    CAS  Google Scholar 

  56. Geyer AM, Gdula RL, Wiedner ES, Johnson MJA. J Am Chem Soc, 2007, 129: 3800–3801

    CAS  PubMed  Google Scholar 

  57. Bunz UHF. Acc Chem Res, 2001, 34: 998–1010

    CAS  PubMed  Google Scholar 

  58. Fürstner A, Mathes C, Lehmann CW. Chem Eur J, 2001, 7: 5299–5317

    PubMed  Google Scholar 

  59. Furstner A, Davies PW. Chem Commun, 2005, 60: 2307–2320

    Google Scholar 

  60. Villar H, Frings M, Bolm C. Chem Soc Rev, 2007, 36: 55–66

    CAS  PubMed  Google Scholar 

  61. Zhang W, Moore J. Adv Synth Catal, 2007, 349: 93–120

    CAS  Google Scholar 

  62. For leading papers on the synthesis of indoline-2,3-diones, see: Martinet procedure: Guyot A, Martinet J. Compt Rend, 1913, 166: 1625–1628

  63. Bonnefoy J, Martinet J. Compt Rend, 1921, 172: 220–221

    CAS  Google Scholar 

  64. Stollé procedure, see: Stollé R. J Prakt Chem, 1923, 105: 137–148

  65. Stollé R. Ber Dtsch Chem Ges, 1913, 46: 3915–3916

    Google Scholar 

  66. Sandmeyer procedure, see: Sandmeyer T. Helv Chim Acta, 1919, 2: 234–242

  67. Pinto AC, Lapis AAM, da Silva BV, Bastos RS, Dupont J, Neto BAD. Tetrahedron Lett, 2008, 49: 5639–5641

    CAS  Google Scholar 

  68. Other procedures, see: Erdmann OL. J Prakt Chem, 1840, 19: 321–362

  69. Laurent A. Ann Chim Phys, 1840, 3: 393

    Google Scholar 

  70. Erdmann OL. J Prakt Chem, 1841, 24: 1–18

    Google Scholar 

  71. Forrer C. Ber Dtsch Chem Ges, 1884, 17: 976

    Google Scholar 

  72. Yadav JS. Synthesis, 2007, 693–696

  73. Tang BX, Song RJ, Wu CY, Liu Y, Zhou MB, Wei WT, Deng GB, Yin DL, Li JH. J Am Chem Soc, 2010, 132: 8900–8902

    CAS  PubMed  Google Scholar 

  74. Satish G, Polu A, Ramar T, Ilangovan A. J Org Chem, 2015, 80: 5167–5175

    CAS  PubMed  Google Scholar 

  75. This transition-metal-free oxidative radical-mediated cyclization of N-methyl-N-aryl-propiol-amide toward isatins using 50 mol% oxone and 1.3 equiv. NaNO2 in MeCN at 110 °C is limited to terminal alkynes and gives a mixture of nitrated and non-nitrated isatins with lower selectivity:, Liao YY, Gao YC, Zheng W, Tang RY. Adv Synth Catal, 2018, 360: 3391–3400

  76. For selected papers and reviews, see: Guo Y, Chen F. Zhong-caoyao, 1986, 17: 8–11

  77. Medvedev AE, Clow A, Sandler M, Glover V. Biochem Pharmacol, 1996, 52: 385–391

    CAS  PubMed  Google Scholar 

  78. Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, Ohnuki T, Komatsubara S. J Antibiot, 2000, 53: 105–109

    CAS  PubMed  Google Scholar 

  79. Franz AK, Dreyfuss PD, Schreiber SL. J Am Chem Soc, 2007, 129: 1020–1021

    CAS  PubMed  Google Scholar 

  80. Ding XQ, Lindström E, Håkanson R. Pharmacol Toxicol, 1997, 81: 232–237

    CAS  PubMed  Google Scholar 

  81. Sumpter WC. Chem Rev, 1944, 34: 393–434

    CAS  Google Scholar 

  82. Popp FD. Adv Heterocyclic Chem, 1975, 18: 1–58

    CAS  Google Scholar 

  83. Silva JFM, Garden SJ, Pinto AC. J Braz Chem Soc, 2001, 12: 273–324

    Google Scholar 

  84. Jones WD. Acc Chem Res, 2003, 36: 140–146

    CAS  PubMed  Google Scholar 

  85. Pinto A, Neuville L, Retailleau P, Zhu J. Org Lett, 2006, 8: 4927–4930

    CAS  PubMed  Google Scholar 

  86. Jones WD, Feher FJ. J Am Chem Soc, 1986, 108: 4814–4819

    CAS  Google Scholar 

  87. Jones WD, Feher FJ. Acc Chem Res, 1989, 22: 91–100

    CAS  Google Scholar 

  88. Chen X, Hao XS, Goodhue CE, Yu JQ. J Am Chem Soc, 2006, 128: 6790–6791

    CAS  PubMed  Google Scholar 

  89. Chen X, Dobereiner G, Hao XS, Giri R, Maugel N, Yu JQ. Tetrahedron, 2009, 65: 3085–3089

    CAS  Google Scholar 

  90. Tang S, Peng P, Wang ZQ, Tang BX, Deng CL, Li JH, Zhong P, Wang NX. Org Lett, 2008, 10: 1875–1878

    CAS  PubMed  Google Scholar 

  91. Peng P, Tang BX, Pi SF, Liang Y, Li JH. J Org Chem, 2009, 74: 3569–3572

    CAS  PubMed  Google Scholar 

  92. Muñiz K. Angew Chem Int Ed, 2009, 48: 9412–9423

    Google Scholar 

  93. Jia C, Kitamura T, Fujiwara Y. Acc Chem Res, 2001, 34: 633–639

    CAS  PubMed  Google Scholar 

  94. Tsuji J. Pure Appl Chem, 1999, 71: 1539–1547

    CAS  Google Scholar 

  95. Takacs J, Jiang X. Curr Org Chem, 2003, 7: 369–396

    CAS  Google Scholar 

  96. Cornell CN, Sigman MS. Inorg Chem, 2007, 46: 1903–1909

    CAS  PubMed  Google Scholar 

  97. Ren W, Xia Y, Ji SJ, Zhang Y, Wan X, Zhao J. Org Lett, 2009, 11: 1841–1844

    CAS  PubMed  Google Scholar 

  98. Zhang C, Jiao N. J Am Chem Soc, 2010, 132: 28–29

    CAS  PubMed  Google Scholar 

  99. Wang A, Jiang H. J Org Chem, 2010, 75: 2321–2326

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21625203, 21871126) and the Opening Fund of KLCBTCMR, Ministry of Education (KLCBTCMR18-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Jin-Heng Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9633_MOESM1_ESM.pdf

Transformations of N-arylpropiolamides to indoline-2,3-diones and acids via C≡C triple bond oxidative cleavage and C(sp2)–H functionalization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, MB., Li, Y., Ouyang, XH. et al. Transformations of N-arylpropiolamides to indoline-2,3-diones and acids via C≡C triple bond oxidative cleavage and C(sp2)–H functionalization. Sci. China Chem. 63, 222–227 (2020). https://doi.org/10.1007/s11426-019-9633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9633-x

Keywords

Navigation