Skip to main content

Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones


Under photocatalytic reductive conditions, trifluoromethyl radical addition onto an ynamide followed by cyclization on a benzoyl moiety produces diverse isoindolinone platforms with good yields. The selectivity of the radical cyclization, N-benzoyl vs. N-benzyl as radical acceptor and the E/Z ratio of isomers have been rationalized by modeling.

This is a preview of subscription content, access via your institution.


  1. 1

    Albert M, Fensterbank L, Lacôte E, Malacria M. Tandem radical reactions. In: Gansäuer A, Ed. Topics Current Chemistry. Vol 264. Berlin: Springer, 2006. 1–62

    Google Scholar 

  2. 2

    Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard JP, Lacôte E, Larraufie MH, Maestri G, Malacria M, Ollivier C. Radical cascade reactions. In: Chatgilialoglu C, Studer A, Eds. Encyclopedia of Radicals in Chemistry, Biology and Materials. Chichester: John Wiley & Sons, 2012. 729–766

    Google Scholar 

  3. 3

    Godineau E, Landais Y. Chem Eur J, 2009, 15: 3044–3055

    CAS  PubMed  Google Scholar 

  4. 4

    Liautard V, Landais Y. Free-radical multicomponent processes. In: Zhu J, Wang Q, Wang MX, Eds. Multicomponent Reactions. 2nd Ed. Weinheim: Wiley, 2014. 401–438

    Google Scholar 

  5. 5

    Chen JR, Yu XY, Xiao WJ. Synthesis, 2015, 47: 604–629

    CAS  Google Scholar 

  6. 6

    Zhang Y, Sun K, Lv Q, Chen X, Qu L, Yu B. Chin Chem Lett, 2019, 30: 1361–1368

    CAS  Google Scholar 

  7. 7

    Xuan J, Studer A. Chem Soc Rev, 2017, 46: 4329–4346

    CAS  Google Scholar 

  8. 8

    Huang HM, Garduño-Castro MH, Morrill C, Procter DJ. Chem Soc Rev, 2019, 48: 4626–4638

    CAS  PubMed  Google Scholar 

  9. 9

    Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew Chem Int Ed, 2019, 58: 2289–2294

    CAS  Google Scholar 

  10. 10

    Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432–2506

    CAS  PubMed  Google Scholar 

  11. 11

    Dagousset G, Carboni A, Masson G, Magnier E. Visible light-induced (per)fluoroalkylation by photoredox catalysis. In: Groult H, Leroux FR, Tressaud A, Eds. Modern Synthesis Process and Reactivity of Fluorinated Compounds: Progress in Fluorine Science. Amsterdam: Elsevier, 2017. 389–426

    Google Scholar 

  12. 12

    Oh E, Kim H, Han S. Synthesis, 2018, 50: 3346–3358

    CAS  Google Scholar 

  13. 13

    Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J Am Chem Soc, 2015, 137: 964–973

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zheng J, Deng Z, Zhang Y, Cui S. Adv Synth Catal, 2016, 358: 746–751

    CAS  Google Scholar 

  15. 15

    Li Y, Lu Y, Qiu G, Ding Q. Org Lett, 2014, 16: 4240–4243

    CAS  PubMed  Google Scholar 

  16. 16

    Noto N, Miyazawa K, Koike T, Akita M. Org Lett, 2015, 17: 3710–3713

    CAS  PubMed  Google Scholar 

  17. 17

    Banerjee B, Litvinov DN, Kang J, Bettale JD, Castle SL. Org Lett, 2010, 12: 2650–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Sato A, Yorimitsu H, Oshima K. Synlett, 2009: 28–31

  19. 19

    Marion F, Courillon C, Malacria M. Org Lett, 2003, 5: 5095–5097

    CAS  PubMed  Google Scholar 

  20. 20

    Marion F, Coulomb J, Servais A, Courillon C, Fensterbank L, Malacria M. Tetrahedron, 2006, 62: 3856–3871

    CAS  Google Scholar 

  21. 21

    Balieu S, Toutah K, Carro L, Chamoreau LM, Rousselière H, Courillon C. Tetrahedron Lett, 2011, 52: 2876–2880

    CAS  Google Scholar 

  22. 22

    Baguia H, Deldaele C, Romero E, Michelet B, Evano G. Synthesis, 2018, 50: 3022–3030

    CAS  Google Scholar 

  23. 23

    Wang CS, Dixneuf PH, Soulé JF. Chem Rev, 2018, 118: 7532–7585

    CAS  PubMed  Google Scholar 

  24. 24

    Staveness D, Bosque I, Stephenson CRJ. Acc Chem Res, 2016, 49: 2295–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Pawlowski R, Stanek F, Stodulski M. Molecules, 2019, 24: 1533–1566

    PubMed Central  Google Scholar 

  27. 27

    Festa AA, Voskressensky LG, Van der Eycken EV. Chem Soc Rev, 2019, 48: 4401–4423

    CAS  PubMed  Google Scholar 

  28. 28

    Chen JR, Hu XQ, Lu LQ, Xiao WJ. Acc Chem Res, 2016, 49: 1911–1923

    CAS  PubMed  Google Scholar 

  29. 29

    Tanoury G. Synthesis, 2016, 48: 2009–2025

    CAS  Google Scholar 

  30. 30

    Cook AM, Wolf C. Tetrahedron Lett, 2015, 56: 2377–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Evano G, Coste A, Jouvin K. Angew Chem Int Ed, 2010, 49: 2840–2859

    CAS  Google Scholar 

  32. 32

    Zhang Y, Hsung RP, Tracey MR, Kurtz KCM, Vera EL. Org Lett, 2004, 6: 1151–1154

    CAS  PubMed  Google Scholar 

  33. 33

    Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650–682

    CAS  PubMed  Google Scholar 

  34. 34

    Eisenberger P, Gischig S, Togni A. Chem Eur J, 2006, 12: 2579–2586

    CAS  PubMed  Google Scholar 

  35. 35

    For trifluoromethyl-containing compounds redox potentials: Jiang Y, Yu H, Fu Y, Liu L. Sci China Chem, 2015, 58: 673–683

    CAS  Google Scholar 

  36. 36

    For photocatalysts redox potentials: Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    For first uses in photoredox catalysis, see: Luo J, Zhang J. ACS Catal, 2016, 6: 873–877

    CAS  Google Scholar 

  38. 38

    For first uses in photoredox catalysis, see: Lévêque C, Chenneberg L, Corcé V, Ollivier C, Fensterbank L. Chem Commun, 2016, 52: 9877–9880

    Google Scholar 

  39. 39

    For a review, see: Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem Commun, 2019, 55: 5408–5419

    CAS  Google Scholar 

  40. 40

    For a revision of the redox potentials, see: Le Vaillant F, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem Sci, 2018, 9: 5883–5889

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Jacquet J, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L. Chem Sci, 2016, 7: 2030–2036

    CAS  PubMed  Google Scholar 

  42. 42

    Singh K, Staig SJ, Weaver JD. J Am Chem Soc, 2014, 136: 5275–5278

    CAS  PubMed  Google Scholar 

  43. 43

    Lin QY, Xu XH, Qing FL. J Org Chem, 2014, 79: 10434–10446

    CAS  PubMed  Google Scholar 

  44. 44

    Larraufie MH, Courillon C, Ollivier C, Lacote E, Malacria M, Fensterbank L. J Am Chem Soc, 2010, 132: 4381–4387

    CAS  PubMed  Google Scholar 

  45. 45

    Bogen S, Gulea M, Fensterbank L, Malacria M. J Org Chem, 1999, 64: 4920–4925

    CAS  PubMed  Google Scholar 

Download references


We thank Sorbonne Université, CNRS and Servier for funding. The authors wish to acknowledge the analytical department of IDRS — Servier for the compounds analyses (IR, NMR, HR-MS) and the SRIMC department for the syntheses on big scale. This work was granted access to the high performance computing (HPC) resources of the HPCaVe Centre at Sorbonne Université and to the HPC resources of IDRIS under the allocation 2018-A0050810312 made by GENCI. The authors wish to acknowledge support from the ICMG Chemistry Nanobio Platform-PCECIC, Grenoble, for calculations facilities. Jérémy Forté is acknowledged for the X-ray diffraction analyses as well as Conor Dent Cullen and Scott Warchal for proofreading the manuscript.

Author information



Corresponding authors

Correspondence to Cyril Ollivier or Louis Fensterbank.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cassé, M., Nisole, C., Dossmann, H. et al. Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones. Sci. China Chem. 62, 1542–1546 (2019).

Download citation


  • ynamides
  • trifluoromethylation
  • photocatalysis
  • cascade reactions
  • tandem processes
  • isoindolinones
  • modeling