The role of organic electron donors in the initiation of BHAS base-induced coupling reactions between haloarenes and arenes


Coupling reactions between haloarenes and arenes (including heteroarenes) that are conducted without added transition metals but in the presence of KOtBu or NaOtBu, have been a topic of great interest since their discovery in 2008. Diverse organic structures act as additives that assist these reactions. These additives are converted into organic electron donors by the butoxide base and this leads to initiation of the coupling reactions, which proceed by radical chain mechanisms. This review provides an overview of the initiation stages of these reactions.

This is a preview of subscription content, log in to check access.


  1. 1

    Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org Lett, 2008, 10: 4673–4676

    CAS  PubMed  Google Scholar 

  2. 2

    Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. Nat Chem, 2010, 2: 1044–1049

    CAS  PubMed  Google Scholar 

  3. 3

    Shirakawa E, Itoh KI, Higashino T, Hayashi T. J Am Chem Soc, 2010, 132: 15537–15539

    CAS  PubMed  Google Scholar 

  4. 4

    Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J Am Chem Soc, 2010, 132: 16737–16740

    CAS  PubMed  Google Scholar 

  5. 5

    Roman DS, Takahashi Y, Charette AB. Org Lett, 2011, 13: 3242–3245

    CAS  PubMed  Google Scholar 

  6. 6

    Studer A, Curran DP. Angew Chem Int Ed, 2011, 50: 5018–5022

    CAS  Google Scholar 

  7. 7

    Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Angew Chem Int Ed, 2019, 58: 5532–5550

    CAS  Google Scholar 

  8. 8

    Chen WC, Hsu YC, Shih WC, Lee CY, Chuang WH, Tsai YF, Chen PPY, Ong TG. Chem Commun, 2012, 48: 6702–6704

    CAS  Google Scholar 

  9. 9

    Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem Sci, 2014, 5: 476–482 (All minima were optimised using the M06L functional with a 6–311G(d,p) basis set. Solvation was modelled implicitly using the CPCM model for benzene as solvent)

    CAS  Google Scholar 

  10. 10

    Murphy JA, Khan TA, Zhou SZ, Thomson DW, Mahesh M. Angew Chem Int Ed, 2005, 44: 1356–1360

    CAS  Google Scholar 

  11. 11

    Murphy JA, Zhou S, Thomson DW, Schoenebeck F, Mahesh M, Park SR, Tuttle T, Berlouis LEA. Angew Chem Int Ed, 2007, 46: 5178–5183

    CAS  Google Scholar 

  12. 12

    Gassman PG, Benecke HP. Tetrahedron Lett, 1969, 10: 1089–1092

    Google Scholar 

  13. 13

    Bowne AT, Christopher TA, Levin RH. Tetrahedron Lett, 1976, 17: 4111–4114

    Google Scholar 

  14. 14

    Yamabe S, Minato T, Ishiwata A, Irinamihira O, Machiguchi T. J Org Chem, 2007, 72: 2832–2841

    CAS  PubMed  Google Scholar 

  15. 15

    Zhou S, Doni E, Anderson GM, Kane RG, MacDougall SW, Ironmonger VM, Tuttle T, Murphy JA. J Am Chem Soc, 2014, 136: 17818–17826

    CAS  PubMed  Google Scholar 

  16. 16

    Cuthbertson J, Gray VJ, Wilden JD. Chem Commun, 2014, 50: 2575–2578

    CAS  Google Scholar 

  17. 17

    Yi H, Jutand A, Lei A. Chem Commun, 2015, 51: 545–548

    CAS  Google Scholar 

  18. 18

    Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LEA, McGuire T, Tuttle T, Murphy JA. J Am Chem Soc, 2016, 138: 7402–7410

    CAS  PubMed  Google Scholar 

  19. 19

    Poonpatana P, Dos Passos Gomes G, Hurrle T, Chardon K, Bräse S, Masters KS, Alabugin I. Chem Eur J, 2017, 23: 9091–9097

    CAS  PubMed  Google Scholar 

  20. 20

    Xu Z, Gao L, Wang L, Gong M, Wang W, Yuan R. ACS Catal, 2015, 5: 45–50

    CAS  Google Scholar 

  21. 21

    Qiu Y, Liu Y, Yang K, Hong W, Li Z, Wang Z, Yao Z, Jiang S. Org Lett, 2011, 13: 3556–3559

    CAS  PubMed  Google Scholar 

  22. 22

    Liu W, Tian F, Wang X, Yu H, Bi Y. Chem Commun, 2013, 49: 2983–2985

    CAS  Google Scholar 

  23. 23

    Woodward RB, Wendler NL, Brutschy FJ. J Am Chem Soc, 1945, 67: 1425–1429

    CAS  Google Scholar 

  24. 24

    Scamehorn RG, Bunnett JF. J Org Chem, 1977, 42: 1449–1457

    CAS  Google Scholar 

  25. 25

    Rossi RA, Bunnett JF. J Am Chem Soc, 1972, 94: 683–684

    CAS  Google Scholar 

  26. 26

    Scamehorn RG, Hardacre JM, Lukanich JM, Sharpe LR. J Org Chem, 1984, 49: 4881–4883

    CAS  Google Scholar 

  27. 27

    Budén ME, Bardagí JI, Puiatti M, Rossi RA. J Org Chem, 2017, 82: 8325–8333 and references therein

    PubMed  Google Scholar 

  28. 28

    Zhang L, Yang H, Jiao L. J Am Chem Soc, 2016, 138: 7151–7160

    CAS  PubMed  Google Scholar 

  29. 29

    Yang H, Zhang L, Jiao L. Chem Eur J, 2017, 23: 65–69

    CAS  PubMed  Google Scholar 

  30. 30

    Yang H, Chu DZ, Jiao L. Chem Sci, 2018, 9: 1534–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Dewanji A, Murarka S, Curran DP, Studer A. Org Lett, 2013, 15: 6102–6105

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Wu Y, Choy PY, Kwong FY. Org Biomol Chem, 2014, 12: 6820–6823

    CAS  PubMed  Google Scholar 

  33. 33

    Barham JP, Coulthard G, Kane RG, Delgado N, John MP, Murphy JA. Angew Chem Int Ed, 2016, 55: 4492–4496

    CAS  Google Scholar 

  34. 34

    Sharma S, Kumar M, Kumar V, Kumar N. Tetrahedron Lett, 2013, 54: 4868–4871

    CAS  Google Scholar 

  35. 35

    Ng YS, Chan CS, Chan KS. Tetrahedron Lett, 2012, 53: 3911–3914

    CAS  Google Scholar 

  36. 36

    Paira R, Singh B, Hota PK, Ahmed J, Sau SC, Johnpeter JP, Mandal SK. J Org Chem, 2016, 81: 2432–2441

    CAS  PubMed  Google Scholar 

  37. 37

    Banik A, Paira R, Shaw BK, Vijaykumar G, Mandal SK. J Org Chem, 2018, 83: 3236–3244

    CAS  PubMed  Google Scholar 

  38. 38

    Nocera G, Young A, Palumbo F, Emery KJ, Coulthard G, McGuire T, Tuttle T, Murphy JA. J Am Chem Soc, 2018, 140: 9751–9757

    CAS  PubMed  Google Scholar 

  39. 39

    Pichette Drapeau M, Fabre I, Grimaud L, Ciofini I, Ollevier T, Taillefer M. Angew Chem Int Ed, 2015, 54: 10587–10591

    CAS  Google Scholar 

  40. 40

    Wei W, Dong X, Nie S, Chen Y, Zhang X, Yan M. OrgLett, 2013, 15: 6018–6021

    CAS  Google Scholar 

  41. 41

    Evoniuk CJ, Gomes GDP, Hill SP, Fujita S, Hanson K, Alabugin IV. J Am Chem Soc, 2017, 139: 16210–16221

    CAS  PubMed  Google Scholar 

  42. 42

    Tanimoro K, Ueno M, Takeda K, Kirihata M, Tanimori S. J Org Chem, 2012, 77: 7844–7849

    CAS  PubMed  Google Scholar 

  43. 43

    Zhao H, Xu X, Wu W, Zhang W, Zhang Y. Catal Commun, 2018, 111: 95–99

    CAS  Google Scholar 

  44. 44

    Zhao H, Shen J, Guo J, Ye R, Zeng H. Chem Commun, 2013, 49: 2323–2325

    CAS  Google Scholar 

  45. 45

    Zhao H, Shen J, Ren C, Zeng W, Zeng H. Org Lett, 2017, 19: 2190–2193

    CAS  PubMed  Google Scholar 

  46. 46

    Liu H, Yin B, Gao Z, Li Y, Jiang H. Chem Commun, 2012, 48: 2033–2035

    CAS  Google Scholar 

  47. 47

    Yong GP, She WL, Zhang YM, Li YZ. Chem Commun, 2011, 47: 11766–11768

    CAS  Google Scholar 

  48. 48

    Ashby EC, Argyropoulos JN. J Org Chem, 1986, 51: 3593–3597

    CAS  Google Scholar 

  49. 49

    Patil M. J Org Chem, 2016, 81: 632–639

    CAS  PubMed  Google Scholar 

Download references


We thank EPSRC, GSK and the University of Strathclyde for funding (AJS).

Author information



Corresponding author

Correspondence to John A. Murphy.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, A.J., Poole, D.L. & Murphy, J.A. The role of organic electron donors in the initiation of BHAS base-induced coupling reactions between haloarenes and arenes. Sci. China Chem. 62, 1425–1438 (2019).

Download citation


  • organic electron donor
  • potassium tert-butoxide
  • electron transfer
  • base-promoted homolytic aromatic substitution (BHAS) coupling
  • benzyne