Advertisement

Science China Chemistry

, Volume 62, Issue 11, pp 1425–1438 | Cite as

The role of organic electron donors in the initiation of BHAS base-induced coupling reactions between haloarenes and arenes

  • Andrew J. Smith
  • Darren L. Poole
  • John A. MurphyEmail author
Reviews
  • 37 Downloads

Abstract

Coupling reactions between haloarenes and arenes (including heteroarenes) that are conducted without added transition metals but in the presence of KOtBu or NaOtBu, have been a topic of great interest since their discovery in 2008. Diverse organic structures act as additives that assist these reactions. These additives are converted into organic electron donors by the butoxide base and this leads to initiation of the coupling reactions, which proceed by radical chain mechanisms. This review provides an overview of the initiation stages of these reactions.

Keywords

organic electron donor potassium tert-butoxide electron transfer base-promoted homolytic aromatic substitution (BHAS) coupling benzyne 

Notes

Acknowledgements

We thank EPSRC, GSK and the University of Strathclyde for funding (AJS).

Conflict of interest The authors declare that they have no conflict of interest.

References

  1. 1.
    Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org Lett, 2008, 10: 4673–4676PubMedGoogle Scholar
  2. 2.
    Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. Nat Chem, 2010, 2: 1044–1049PubMedGoogle Scholar
  3. 3.
    Shirakawa E, Itoh KI, Higashino T, Hayashi T. J Am Chem Soc, 2010, 132: 15537–15539PubMedGoogle Scholar
  4. 4.
    Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J Am Chem Soc, 2010, 132: 16737–16740PubMedGoogle Scholar
  5. 5.
    Roman DS, Takahashi Y, Charette AB. Org Lett, 2011, 13: 3242–3245PubMedGoogle Scholar
  6. 6.
    Studer A, Curran DP. Angew Chem Int Ed, 2011, 50: 5018–5022Google Scholar
  7. 7.
    Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Angew Chem Int Ed, 2019, 58: 5532–5550Google Scholar
  8. 8.
    Chen WC, Hsu YC, Shih WC, Lee CY, Chuang WH, Tsai YF, Chen PPY, Ong TG. Chem Commun, 2012, 48: 6702–6704Google Scholar
  9. 9.
    Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem Sci, 2014, 5: 476–482 (All minima were optimised using the M06L functional with a 6–311G(d,p) basis set. Solvation was modelled implicitly using the CPCM model for benzene as solvent)Google Scholar
  10. 10.
    Murphy JA, Khan TA, Zhou SZ, Thomson DW, Mahesh M. Angew Chem Int Ed, 2005, 44: 1356–1360Google Scholar
  11. 11.
    Murphy JA, Zhou S, Thomson DW, Schoenebeck F, Mahesh M, Park SR, Tuttle T, Berlouis LEA. Angew Chem Int Ed, 2007, 46: 5178–5183Google Scholar
  12. 12.
    Gassman PG, Benecke HP. Tetrahedron Lett, 1969, 10: 1089–1092Google Scholar
  13. 13.
    Bowne AT, Christopher TA, Levin RH. Tetrahedron Lett, 1976, 17: 4111–4114Google Scholar
  14. 14.
    Yamabe S, Minato T, Ishiwata A, Irinamihira O, Machiguchi T. J Org Chem, 2007, 72: 2832–2841PubMedGoogle Scholar
  15. 15.
    Zhou S, Doni E, Anderson GM, Kane RG, MacDougall SW, Ironmonger VM, Tuttle T, Murphy JA. J Am Chem Soc, 2014, 136: 17818–17826PubMedGoogle Scholar
  16. 16.
    Cuthbertson J, Gray VJ, Wilden JD. Chem Commun, 2014, 50: 2575–2578Google Scholar
  17. 17.
    Yi H, Jutand A, Lei A. Chem Commun, 2015, 51: 545–548Google Scholar
  18. 18.
    Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LEA, McGuire T, Tuttle T, Murphy JA. J Am Chem Soc, 2016, 138: 7402–7410PubMedGoogle Scholar
  19. 19.
    Poonpatana P, Dos Passos Gomes G, Hurrle T, Chardon K, Bräse S, Masters KS, Alabugin I. Chem Eur J, 2017, 23: 9091–9097PubMedGoogle Scholar
  20. 20.
    Xu Z, Gao L, Wang L, Gong M, Wang W, Yuan R. ACS Catal, 2015, 5: 45–50Google Scholar
  21. 21.
    Qiu Y, Liu Y, Yang K, Hong W, Li Z, Wang Z, Yao Z, Jiang S. Org Lett, 2011, 13: 3556–3559PubMedGoogle Scholar
  22. 22.
    Liu W, Tian F, Wang X, Yu H, Bi Y. Chem Commun, 2013, 49: 2983–2985Google Scholar
  23. 23.
    Woodward RB, Wendler NL, Brutschy FJ. J Am Chem Soc, 1945, 67: 1425–1429Google Scholar
  24. 24.
    Scamehorn RG, Bunnett JF. J Org Chem, 1977, 42: 1449–1457Google Scholar
  25. 25.
    Rossi RA, Bunnett JF. J Am Chem Soc, 1972, 94: 683–684Google Scholar
  26. 26.
    Scamehorn RG, Hardacre JM, Lukanich JM, Sharpe LR. J Org Chem, 1984, 49: 4881–4883Google Scholar
  27. 27.
    Budén ME, Bardagí JI, Puiatti M, Rossi RA. J Org Chem, 2017, 82: 8325–8333 and references thereinPubMedGoogle Scholar
  28. 28.
    Zhang L, Yang H, Jiao L. J Am Chem Soc, 2016, 138: 7151–7160PubMedGoogle Scholar
  29. 29.
    Yang H, Zhang L, Jiao L. Chem Eur J, 2017, 23: 65–69PubMedGoogle Scholar
  30. 30.
    Yang H, Chu DZ, Jiao L. Chem Sci, 2018, 9: 1534–1539PubMedPubMedCentralGoogle Scholar
  31. 31.
    Dewanji A, Murarka S, Curran DP, Studer A. Org Lett, 2013, 15: 6102–6105PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu Y, Choy PY, Kwong FY. Org Biomol Chem, 2014, 12: 6820–6823PubMedGoogle Scholar
  33. 33.
    Barham JP, Coulthard G, Kane RG, Delgado N, John MP, Murphy JA. Angew Chem Int Ed, 2016, 55: 4492–4496Google Scholar
  34. 34.
    Sharma S, Kumar M, Kumar V, Kumar N. Tetrahedron Lett, 2013, 54: 4868–4871Google Scholar
  35. 35.
    Ng YS, Chan CS, Chan KS. Tetrahedron Lett, 2012, 53: 3911–3914Google Scholar
  36. 36.
    Paira R, Singh B, Hota PK, Ahmed J, Sau SC, Johnpeter JP, Mandal SK. J Org Chem, 2016, 81: 2432–2441PubMedGoogle Scholar
  37. 37.
    Banik A, Paira R, Shaw BK, Vijaykumar G, Mandal SK. J Org Chem, 2018, 83: 3236–3244PubMedGoogle Scholar
  38. 38.
    Nocera G, Young A, Palumbo F, Emery KJ, Coulthard G, McGuire T, Tuttle T, Murphy JA. J Am Chem Soc, 2018, 140: 9751–9757PubMedGoogle Scholar
  39. 39.
    Pichette Drapeau M, Fabre I, Grimaud L, Ciofini I, Ollevier T, Taillefer M. Angew Chem Int Ed, 2015, 54: 10587–10591Google Scholar
  40. 40.
    Wei W, Dong X, Nie S, Chen Y, Zhang X, Yan M. OrgLett, 2013, 15: 6018–6021Google Scholar
  41. 41.
    Evoniuk CJ, Gomes GDP, Hill SP, Fujita S, Hanson K, Alabugin IV. J Am Chem Soc, 2017, 139: 16210–16221PubMedGoogle Scholar
  42. 42.
    Tanimoro K, Ueno M, Takeda K, Kirihata M, Tanimori S. J Org Chem, 2012, 77: 7844–7849PubMedGoogle Scholar
  43. 43.
    Zhao H, Xu X, Wu W, Zhang W, Zhang Y. Catal Commun, 2018, 111: 95–99Google Scholar
  44. 44.
    Zhao H, Shen J, Guo J, Ye R, Zeng H. Chem Commun, 2013, 49: 2323–2325Google Scholar
  45. 45.
    Zhao H, Shen J, Ren C, Zeng W, Zeng H. Org Lett, 2017, 19: 2190–2193PubMedGoogle Scholar
  46. 46.
    Liu H, Yin B, Gao Z, Li Y, Jiang H. Chem Commun, 2012, 48: 2033–2035Google Scholar
  47. 47.
    Yong GP, She WL, Zhang YM, Li YZ. Chem Commun, 2011, 47: 11766–11768Google Scholar
  48. 48.
    Ashby EC, Argyropoulos JN. J Org Chem, 1986, 51: 3593–3597Google Scholar
  49. 49.
    Patil M. J Org Chem, 2016, 81: 632–639PubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Andrew J. Smith
    • 1
  • Darren L. Poole
    • 2
  • John A. Murphy
    • 1
    Email author
  1. 1.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
  2. 2.Flexible Discovery UnitGlaxoSmithKline Medicines Research CentreStevenageUK

Personalised recommendations