Skip to main content
Log in

Visible-light-promoted oxidative coupling of styrene with cyclic ethers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new visible-light-promoted oxidative coupling of vinylarenes with cyclic ethers has been developed using rose bengal as photocatalyst and tert-butyl hydrogenperoxide (TBHP) as oxidant under ambient air at room temperature. A library of α-oxyalkylated ketones with broad functionalities has been synthesized in moderate to good yields. A radical mechanism is suggested for the present protocol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeitler K. Angew Chem Int Ed, 2009, 48: 9785–9789

    CAS  Google Scholar 

  3. Bogdos MK, Pinard E, Murphy JA. Beilstein J Org Chem, 2018, 14: 2035–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou QQ, Zou YQ, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2019, 58: 1586–1604

    CAS  Google Scholar 

  5. Narayanam JMR, Stephenson CRJ. Chem Soc Rev, 2011, 40: 102–113

    CAS  PubMed  Google Scholar 

  6. Wang J, Li B, Liu LC, Jiang C, He T, He W. Sci China Chem, 2018, 61: 1594–1599

    CAS  Google Scholar 

  7. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    CAS  Google Scholar 

  8. Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035–10074

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ravelli D, Fagnoni M, Albini A. Chem Soc Rev, 2013, 42: 97–113

    CAS  PubMed  Google Scholar 

  11. Yan SS, Zhu L, Ye JH, Zhang Z, Huang H, Zeng H, Li CJ, Lan Y, Yu DG. Chem Sci, 2018, 9: 4873–4878

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan Y, Kee CW, Chen L, Tan CH. Green Chem, 2011, 13: 2682–2685

    CAS  Google Scholar 

  13. Ravelli D, Fagnoni M. ChemCatChem, 2012, 4: 169–171

    CAS  Google Scholar 

  14. Hari DP, König B. Chem Commun, 2014, 50: 6688–6699

    CAS  Google Scholar 

  15. Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org Lett, 2018, 20: 7125–7130

    CAS  PubMed  Google Scholar 

  16. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    CAS  PubMed  Google Scholar 

  17. Wang H, Li Y, Tang Z, Wang S, Zhang H, Cong H, Lei A. ACS Catal, 2018, 8: 10599–10605

    CAS  Google Scholar 

  18. Nakhla JS, Kampf JW, Wolfe JP. J Am Chem Soc, 2006, 128: 2893–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lira R, Wolfe JP. J Am Chem Soc, 2004, 126: 13906–13907

    CAS  PubMed  Google Scholar 

  20. Kalyani D, Sanford MS. J Am Chem Soc, 2008, 130: 2150–2151

    CAS  PubMed  Google Scholar 

  21. Griffith JC, Jones KM, Picon S, Rawling MJ, Kariuki BM, Campbell M, Tomkinson NCO. J Am Chem Soc, 2010, 132: 14409–14411

    CAS  PubMed  Google Scholar 

  22. Schmidt VA, Alexanian EJ. Angew Chem Int Ed, 2010, 49: 4491–4494

    CAS  Google Scholar 

  23. Zhu MK, Zhao JF, Loh TP. J Am Chem Soc, 2010, 132: 6284–6285

    CAS  PubMed  Google Scholar 

  24. Huang L, Jiang H, Qi C, Liu X. J Am Chem Soc, 2010, 132: 17652–17654

    CAS  PubMed  Google Scholar 

  25. Liao L, Jana R, Urkalan KB, Sigman MS. J Am Chem Soc, 2011, 133: 5784–5787

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cornwall RG, Zhao B, Shi Y. Org Lett, 2011, 13: 434–437

    CAS  PubMed  Google Scholar 

  27. Sequeira FC, Turnpenny BW, Chemler SR. Angew Chem Int Ed, 2010, 49: 6365–6368

    CAS  Google Scholar 

  28. Iglesias A, Pérez EG, Muñiz K. Angew Chem Int Ed, 2010, 49: 8109–8111

    CAS  Google Scholar 

  29. Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew Chem Int Ed, 2011, 50: 9478–9482

    Google Scholar 

  30. Zhao B, Du H, Cui S, Shi Y. J Am Chem Soc, 2010, 132: 3523–3532

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacobsen EN, Marko I, Mungall WS, Schroeder G, Sharpless KB. J Am Chem Soc, 1988, 110: 1968–1970

    CAS  Google Scholar 

  32. Neisius NM, Plietker B. J Org Chem, 2008, 73: 3218–3227

    CAS  PubMed  Google Scholar 

  33. Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem Rev, 1994, 94: 2483–2547

    CAS  Google Scholar 

  34. Schultz MJ, Sigman MS. J Am Chem Soc, 2006, 128: 1460–1461

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Sigman MS. J Am Chem Soc, 2007, 129: 3076–3077

    CAS  PubMed  Google Scholar 

  36. Wang A, Jiang H, Chen H. J Am Chem Soc, 2009, 131: 3846–3847

    CAS  PubMed  Google Scholar 

  37. Li Y, Song D, Dong VM. J Am Chem Soc, 2008, 130: 2962–2964

    CAS  PubMed  Google Scholar 

  38. Bar GLJ, Lloyd-Jones GC, Booker-Milburn KI. J Am Chem Soc, 2005, 127: 7308–7309

    CAS  PubMed  Google Scholar 

  39. Muñiz K, Hövelmann CH, Streuff J. J Am Chem Soc, 2008, 130: 763–773

    PubMed  Google Scholar 

  40. Streuff J, Hövelmann CH, Nieger M, Muñiz K. J Am Chem Soc, 2005, 127: 14586–14587

    CAS  PubMed  Google Scholar 

  41. Du H, Yuan W, Zhao B, Shi Y. J Am Chem Soc, 2007, 129: 11688–11689

    CAS  PubMed  Google Scholar 

  42. Du H, Zhao B, Shi Y. J Am Chem Soc, 2007, 129: 762–763

    CAS  PubMed  Google Scholar 

  43. Muñiz K. J Am Chem Soc, 2007, 129: 14542–14543

    PubMed  Google Scholar 

  44. Desai LV, Sanford MS. Angew Chem Int Ed, 2007, 46: 5737–5740

    CAS  Google Scholar 

  45. Alexanian EJ, Lee C, Sorensen EJ. J Am Chem Soc, 2005, 127: 7690–7691

    CAS  PubMed  Google Scholar 

  46. Liu G, Stahl SS. J Am Chem Soc, 2006, 128: 7179–7181

    CAS  PubMed  Google Scholar 

  47. Yip KT, Yang M, Law KL, Zhu NY, Yang D. J Am Chem Soc, 2006, 128: 3130–3131

    CAS  PubMed  Google Scholar 

  48. Minami K, Kawamura Y, Koga K, Hosokawa T. Org Lett, 2005, 7: 5689–5692

    CAS  PubMed  Google Scholar 

  49. Scarborough CC, Stahl SS. Org Lett, 2006, 8: 3251–3254

    CAS  PubMed  Google Scholar 

  50. Zhang W, Wang NX, Bai CB, Wang YJ, Lan XW, Xing Y, Li YH, Wen JL. Sci Rep, 2015, 5: 15250

    PubMed  PubMed Central  Google Scholar 

  51. Yan Z, Wang NX, Gao XW, Li JL, Wu YH, Zhang T, Chen SL, Xing Y. Adv Synth Catal, 2019, 361: 1007–1011

    CAS  Google Scholar 

  52. Cheng K, Huang L, Zhang Y. Org Lett, 2009, 11: 2908–2911

    CAS  PubMed  Google Scholar 

  53. Kim JY, Park JC, Song HJ, Park KH. Bull Korean Chem Soc, 2010, 31: 3509–3510

    CAS  Google Scholar 

  54. Sun H, Zhang Y, Guo F, Zha Z, Wang Z. J Org Chem, 2012, 77: 3563–3569

    CAS  PubMed  Google Scholar 

  55. Zhang JX, Wang YJ, Zhang W, Wang NX, Bai CB, Xing YL, Li YH, Wen JL. Sci Rep, 2015, 4: 7446

    Google Scholar 

  56. Ji PY, Liu YF, Xu JW, Luo WP, Liu Q, Guo CC. J Org Chem, 2017, 82: 2965–2971

    CAS  PubMed  Google Scholar 

  57. Kibriya G, Mondal S, Hajra A. Org Lett, 2018, 20: 7740–7743

    CAS  PubMed  Google Scholar 

  58. Singsardar M, Dey A, Sarkar R, Hajra A. J Org Chem, 2018, 83: 12694–12701

    CAS  PubMed  Google Scholar 

  59. Kibriya G, Bagdi AK, Hajra A. J Org Chem, 2018, 83: 10619–10626

    CAS  PubMed  Google Scholar 

  60. Kibriya G, Bagdi AK, Hajra A. Org Biomol Chem, 2018, 16: 3473–3478

    CAS  PubMed  Google Scholar 

  61. Kibriya G, Samanta S, Jana S, Mondal S, Hajra A. J Org Chem, 2017, 82: 13722–13727

    CAS  PubMed  Google Scholar 

  62. Mitra S, Ghosh M, Mishra S, Hajra A. J Org Chem, 2015, 80: 8275–8281

    CAS  PubMed  Google Scholar 

  63. Li J, Zhang J, Tan H, Wang DZ. Org Lett, 2015, 17: 2522–2525

    CAS  PubMed  Google Scholar 

  64. Zhu X, Xie X, Li P, Guo J, Wang L. Org Lett, 2016, 18: 1546–1549

    CAS  PubMed  Google Scholar 

  65. Zou L, Li P, Wang B, Wang L. Green Chem, 2019, 21: 3362–3369

    CAS  Google Scholar 

  66. Yadav AK, Singh KN. Chem Commun, 2018, 54: 1976–1979

    CAS  Google Scholar 

  67. da Silva G, Hamdan MR, Bozzelli JW. J Chem Theor Comput, 2009, 5: 3185–3194

    CAS  Google Scholar 

  68. Ghosh T, Maity P, Ranu BC. Org Lett, 2018, 20: 1011–1014

    CAS  PubMed  Google Scholar 

  69. Batra A, Singh P, Singh KN. Eur J Org Chem, 2017, 26: 3739–3762

    Google Scholar 

  70. Keshari T, Yadav VK, Srivastava VP, Yadav LDS. Green Chem, 2014, 16: 3986–3992

    CAS  Google Scholar 

  71. Kazakov DV, Schmidt R. J Phys Chem A, 2007, 111: 4274–4279

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Council of Scientific and Industrial Research (CSIR), and New Delhi (02(0307)/17/EMR-II). D.G thanks University Grants Commission (UGC) (DSK) for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alakananda Hajra.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibriya, G., Ghosh, D. & Hajra, A. Visible-light-promoted oxidative coupling of styrene with cyclic ethers. Sci. China Chem. 63, 42–46 (2020). https://doi.org/10.1007/s11426-019-9609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9609-9

Keywords

Navigation