Skip to main content
Log in

Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A catalytic enantioselective three-component Ugi reaction was developed. SPINOL-derived phosphoric acid with bulky 2,4,6-tricyclohexylphenyl groups at the 6,6′ positions was found to be the best catalyst to afford α-amino amide derivatives in good to excellent yields (62% to 99%) and enantiocontrol (81% to >99% enantiomeric excess). This asymmetric reaction was applicable well to an array of aliphatic aldehydes. The gram-scale synthesis, modification of dapsone, and enantioselective synthesis of (R)-Lacosamide underline the general utility of this methodology Influence of dihedral angles and substituents of the chiral phosphoric acids on the enantioselectivity was also discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kent SBH. Chem Soc Rev, 2009, 38: 338–351

    CAS  PubMed  Google Scholar 

  2. D’Hondt M, Bracke N, Taevernier L, Gevaert B, Verbeke F, Wynendaele E, De Spiegeleer B. J Pharm Biomed Anal, 2014, 101: 2–30

    PubMed  Google Scholar 

  3. Wan R, Bai R, Yan C, Lei J, Shi Y. Cell, 2019, 177: 339–351

    CAS  PubMed  Google Scholar 

  4. Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR. Cell, 2017, 168: 878–889

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mons E, Jansen IDC, Loboda J, van Doodewaerd BR, Hermans J, Verdoes M, van Boeckel CAA, van Veelen PA, Turk B, Turk D, Ovaa H. J Am Chem Soc, 2019, 141: 3507–3514

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Miley GP, Rote JC, Silverman RB, Kelleher NL, Thomson RJ. Org Lett, 2018, 20: 2369–2373

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McGrath NA, Brichacek M, Njardarson JT. J Chem Educ, 2010, 87: 1348–1349

    CAS  Google Scholar 

  8. Pelagatti P, Carcelli M, Calbiani F, Cassi C, Elviri L, Pelizzi C, Rizzotti U, Rogolino D. Organometallics, 2005, 24: 5836–5844

    CAS  Google Scholar 

  9. Burguete MI, Collado M, Escorihuela J, Luis SV. Angew Chem Int Ed, 2007, 46: 9002–9005

    CAS  Google Scholar 

  10. Yu Z, Liu X, Zhou L, Lin L, Feng X. Angew Chem Int Ed, 2009, 48: 5195–5198

    CAS  Google Scholar 

  11. Banik SM, Levina A, Hyde AM, Jacobsen EN. Science, 2017, 358: 761–764

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Altava B, Burguete MI, Carbó N, Escorihuela J, Luis SV. Tetrahedron-Asymmetry, 2010, 21: 982–989

    CAS  Google Scholar 

  13. Gorla L, Martí-Centelles V, Altava B, Burguete MI, Luis SV. Dalton Trans, 2017, 46: 2660–2669

    CAS  PubMed  Google Scholar 

  14. Zhang W, Liu F, Zhang C, Luo JG, Luo J, Yu W, Kong L. Anal Chem, 2017, 89: 12319–12326

    CAS  PubMed  Google Scholar 

  15. Katritzky AR, Mohapatra P. P, Singh S, Clemens N, Kirichenko K. J Serb Chem Soc, 2005, 70: 319–327

    CAS  Google Scholar 

  16. Valeur E, Bradley M. Chem Soc Rev, 2009, 38: 606–631

    CAS  PubMed  Google Scholar 

  17. Pattabiraman VR, Bode JW. Nature, 2011, 480: 471–479

    CAS  PubMed  Google Scholar 

  18. Zhu YP, Mampuys P, Sergeyev S, Ballet S, Maes BUW. Adv Synth Catal, 2017, 359: 2481–2498

    CAS  Google Scholar 

  19. Ugi I, Dömling A, Hörl W. Endeavour, 1994, 18: 115–122

    CAS  Google Scholar 

  20. Dömling A, Ugi I. Angew Chem Int Ed, 2000, 39: 3168–3210

    Google Scholar 

  21. Ruijter E, Scheffelaar R, Orru RVA. Angew Chem Int Ed, 2011, 50: 6234–6246

    CAS  Google Scholar 

  22. Dömling A. Chem Rev, 2006, 106: 17–89

    PubMed  Google Scholar 

  23. Ugi I, Steinbrückner C. Angew Chem, 1960, 72: 267–268

    CAS  Google Scholar 

  24. Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew Chem, 1959, 71: 386

    Google Scholar 

  25. Pan SC, List B. Angew Chem Int Ed, 2008, 47: 3622–3625

    CAS  Google Scholar 

  26. Tomlin FM, Gerling-Driessen UIM, Liu YC, Flynn RA, Vangala JR, Lentz CS, Clauder-Muenster S, Jakob P, Mueller WF, Ordoñez-Rueda D, Paulsen M, Matsui N, Foley D, Rafalko A, Suzuki T, Bogyo M, Steinmetz LM, Radhakrishnan SK, Bertozzi CR. ACS Cent Sci, 2017, 3: 1143–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Noyori R. Angew Chem Int Ed, 2002, 41: 2008–2022

    CAS  Google Scholar 

  28. Xiao KJ, Lin DW, Miura M, Zhu RY, Gong W, Wasa M, Yu JQ. J Am Chem Soc, 2014, 136: 8138–8142

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Q, Wang DX, Wang MX, Zhu J. Acc Chem Res, 2018, 51: 1290–1300

    CAS  PubMed  Google Scholar 

  30. Luo W, Yuan X, Lin L, Zhou P, Liu X, Feng X. Chem Sci, 2016, 7: 4736–4740

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong Q, Dong S, Chen Y, Liu X, Feng X. Nat Commun, 2019, 10: 2116

    PubMed  PubMed Central  Google Scholar 

  32. Yue T, Wang MX, Wang DX, Masson G, Zhu J. Angew Chem Int Ed, 2009, 48: 6717–6721

    CAS  Google Scholar 

  33. Su Y, Bouma MJ, Alcaraz L, Stocks M, Furber M, Masson G, Zhu J. Chem Eur J, 2012, 18: 12624–12627

    CAS  PubMed  Google Scholar 

  34. Hashimoto T, Kimura H, Kawamata Y, Maruoka K. Angew Chem Int Ed, 2012, 51: 7279–7281

    CAS  Google Scholar 

  35. Zhang Y, Ao YF, Huang ZT, Wang DX, Wang MX, Zhu J. Angew Chem Int Ed, 2016, 55: 5282–5285

    CAS  Google Scholar 

  36. Zhao W, Huang L, Guan Y, Wulff WD. Angew Chem Int Ed, 2014, 53: 3436–3441

    CAS  Google Scholar 

  37. Zhang J, Yu P, Li SY, Sun H, Xiang SH, Wang JJ, Houk KN, Tan B. Science, 2018, 361: eaas8707

    PubMed  Google Scholar 

  38. Zhang J, Lin SX, Cheng DJ, Liu XY, Tan B. J Am Chem Soc, 2015, 137: 14039–14042

    CAS  PubMed  Google Scholar 

  39. Xu JH, Zheng SC, Zhang JW, Liu XY, Tan B. Angew Chem Int Ed, 2016, 55: 11834–11839

    CAS  Google Scholar 

  40. Zhang LL, Zhang JW, Xiang SH, Guo Z, Tan B. Chin J Chem, 2018, 36: 1182–1186

    CAS  Google Scholar 

  41. Shaabani A, Keshipour S, Shaabani S, Mahyari M. Tetrahedron Lett, 2012, 53: 1641–1644

    CAS  Google Scholar 

  42. Zhang J, Shi W, Liu Q, Chen T, Zhou X, Yang C, Zhang K, Xie Z. Polym Chem, 2018, 9: 5566–5571

    CAS  Google Scholar 

  43. Akiyama T. Chem Rev, 2007, 107: 5744–5758

    CAS  PubMed  Google Scholar 

  44. Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153

    CAS  PubMed  Google Scholar 

  45. Reid JP, Goodman JM. Chem Eur J, 2017, 23: 14248–14260

    CAS  PubMed  Google Scholar 

  46. Zhu YI, Stiller MJ. J Am Acad Dermatol, 2001, 45: 420–434

    CAS  PubMed  Google Scholar 

  47. Beyreuther BK, Freitag J, Heers C, Krebsfänger N, Scharfenecker U, Stöhr T. CNS Drug Rev, 2007, 13: 21–42

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wehlan H, Oehme J, Schäfer A, Rossen K. Org Process Res Dev, 2015, 19: 1980–1986

    CAS  Google Scholar 

  49. Xie Y, Zhao Y, Qian B, Yang L, Xia C, Huang H. Angew Chem Int Ed, 2011, 50: 5682–5686

    CAS  Google Scholar 

  50. Xu B, Zhu SF, Zhang ZC, Yu ZX, Ma Y, Zhou QL. Chem Sci, 2014, 5: 1442–1448

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21825105, 21772081), Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries (JCYJ20170412151701379, KQJSCX20170328153203), Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (PDJH2019C467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, YY., Sun, H. et al. Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid. Sci. China Chem. 63, 47–54 (2020). https://doi.org/10.1007/s11426-019-9606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9606-2

Keywords

Navigation