Skip to main content
Log in

Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The emergence of non-fullerene acceptors (NFA) offers a promising opportunity to develop high-performance donor/acceptor pairs with high power conversion efficiency, as NFAs offer tunable energy levels, broad absorption and suitable aggregation property. In order to enhance light-harvesting capability of active layers, we choose a wide bandgap polymer PTQ10 as the donor to blend with a narrow bandgap NFA Y6 as the acceptor. In comparison with PTQ10:IDIC blend, ~130 nm red-shifted absorption spectrum is observed in the PTQ10:Y6 blend, which potentially enhance the short-circuit current density (Jsc) for the PSCs. In addition, the optimal PTQ10:Y6 blend shows higher photoluminescence quenching efficiency and more efficient charge separation, higher charge mobilities, as well as weaker bimolecular recombination over the PTQ10:IDIC blend, which leads to an outstanding power conversion efficiency (PCE) of 16.53%, with a notable Jsc of 26.65 mA cm−2 and fill factor (FF) of 0.751.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  2. Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M. Adv Mater, 2014, 26: 29–39

    Article  CAS  Google Scholar 

  3. Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791

    Article  Google Scholar 

  4. Servaites JD, Ratner MA, Marks TJ. Energy Environ Sci, 2011, 4: 4410–4422

    Article  CAS  Google Scholar 

  5. Li Y. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  6. Ye L, Zhang S, Huo L, Zhang M, Hou J. Acc Chem Res, 2014, 47: 1595–1603

    Article  CAS  Google Scholar 

  7. Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437

    Article  Google Scholar 

  8. Wang G, Melkonyan FS, Facchetti A, Marks TJ. Angew Chem Int Ed, 2019, 58: 4129–4142

    Article  CAS  Google Scholar 

  9. Zhang Z, Ding Z, Jones DJ, Wong WWH, Kan B, Bi Z, Wan X, Ma W, Chen Y, Long X, Dou C, Liu J, Wang L. Sci China Chem, 2018, 61: 1025–1033

    Article  CAS  Google Scholar 

  10. Xie Q, Liao X, Chen L, Zhang M, Gao K, Huang B, Xu H, Liu F, Jen AKY, Chen Y. Nano Energy, 2019, 61: 228–235

    Article  CAS  Google Scholar 

  11. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  CAS  Google Scholar 

  12. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  CAS  Google Scholar 

  13. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  Google Scholar 

  14. Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Nat Energy, 2018, 3: 720–731

    Article  CAS  Google Scholar 

  15. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2018, 48: 1596–1625

    Article  Google Scholar 

  16. Lopez SA, Sanchez-Lengeling B, de Goes Soares J, Aspuru-Guzik A. Joule, 2017, 1: 857–870

    Article  CAS  Google Scholar 

  17. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  Google Scholar 

  18. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  Google Scholar 

  19. Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209

    Article  Google Scholar 

  20. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, Tan CH, Dimitrov SD, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec CJ, Salleo A, Durrant JR, McCulloch I. Nat Commun, 2016, 7: 11585

    Article  CAS  Google Scholar 

  21. Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152

    Article  Google Scholar 

  22. Li X, Pan F, Sun C, Zhang M, Wang Z, Du J, Wang J, Xiao M, Xue L, Zhang ZG, Zhang C, Liu F, Li Y. Nat Commun, 2019, 10: 519

    Article  Google Scholar 

  23. Aldrich TJ, Matta M, Zhu W, Swick SM, Stern CL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. J Am Chem Soc, 2019, 141: 3274–3287

    Article  CAS  Google Scholar 

  24. Feng S, Ma D, Wu L, Liu Y, Zhang C’, Xu X, Chen X, Yan S, Bo Z. Sci China Chem, 2018, 61: 1320–1327

    Article  CAS  Google Scholar 

  25. Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313

    Article  CAS  Google Scholar 

  26. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  27. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    Article  CAS  Google Scholar 

  28. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  29. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Article  Google Scholar 

  30. Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang ZG, Li Y. Nat Commun, 2018, 9: 743

    Article  Google Scholar 

  31. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Phys Rev Lett, 2004, 93: 216601

    Article  CAS  Google Scholar 

  32. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873140, 51603136, 91633301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaohua Cui or Yongfang Li.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zheng, Y., Yang, H. et al. Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%. Sci. China Chem. 63, 265–271 (2020). https://doi.org/10.1007/s11426-019-9599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9599-1

Keywords

Navigation