Skip to main content
Log in

Photo-driven water splitting photoelectrochemical cells by tandem organic dye sensitized solar cells with I/I3 as redox mediator

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dye-sensitized photoelectrochemical tandem cells have shown the promise for light driven hydrogen production from water owing to the low cost, wide absorption spectra in the visible region and ease to process of their constitutive photoelectrode materials. However, most photo-driven water splitting photoelectrochemical cells driven by organic dye sensitized solar cells exhibit unsatisfactory hydrogen evolution rate, primarily attributed to their poor light capturing ability and low photocurrent performance. Here we present the construction of a tandem system consisting of an organic blue-colored S5 sensitizer-based dye-sensitized photoelectrochemical cell (DSPEC) wired in series with three spectral-complemental dyes BTA-2, APP-3 and APP-1 sensitizers-based dye-sensitized solar cell (DSC), respectively. The two spectral-complemental chromophores were used in DSC and DSPEC to ensure that the full solar spectrum could be absorbed as much as possible. The results showed that the photocurrent of tandem device was closely related to the open-circuit voltage (Voc) of sensitized DSC, in which the tandem configuration consisting of S5 based DSPEC and BTA-2 based DSC gave the best photocurrent. On this basis, tandem device with the only light energy and no external applied electrical bias was further constructed of BTA-2 based 2-junction DSC and S5 based DSPEC and obtained a photocurrent of 500 µA cm−2 for hydrogen generation. Furthermore, I/I3 was used as a redox couple between dye regeneration and O2 production on the surface of Pt-IrO2/WO3. The strategy opens up the application of pure organic dyes in DSC/DSPEC tandem device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG. Proc Natl Acad Sci USA, 2006, 103: 15729–15735

    CAS  PubMed  Google Scholar 

  2. Dresselhaus MS, Thomas IL. Nature, 2001, 414: 332–337

    CAS  PubMed  Google Scholar 

  3. Murray J, King D. Nature, 2012, 481: 433–435

    CAS  PubMed  Google Scholar 

  4. Hammarstrom L, Hammes-Schiffer S. Acc Chem Res, 2009, 42: 1859–1860

    CAS  PubMed  Google Scholar 

  5. Service RF. Science, 2005, 309: 548–551

    CAS  PubMed  Google Scholar 

  6. Grätzel M. Nature, 2001, 414: 338–344

    PubMed  Google Scholar 

  7. Yang Y, Niu S, Han D, Liu T, Wang G, Li Y. Adv Energy Mater, 2017, 7: 1700555

    Google Scholar 

  8. Yao T, An X, Han H, Chen JQ, Li C. Adv Energy Mater, 2018, 8: 1800210

    Google Scholar 

  9. Tolod K, Hernández S, Russo N. Catalysts, 2017, 7: 13

    Google Scholar 

  10. Fujishima A, Honda K. Nature, 1972, 238: 37–38

    CAS  PubMed  Google Scholar 

  11. Xu P, McCool NS, Mallouk TE. Nano Today, 2017, 14: 42–58

    CAS  Google Scholar 

  12. Brillet J, Cornuz M, Formal FL, Yum JH, Grätzel M, Sivula K. J Mater Res, 2011, 25: 17–24

    Google Scholar 

  13. Khaselev O, Turner JA. Science, 1998, 280: 425–427

    CAS  PubMed  Google Scholar 

  14. Abe R, Higashi M, Domen K. ChemSusChem, 2011, 4: 228–237

    CAS  PubMed  Google Scholar 

  15. Weber MF. J Electrochem Soc, 1984, 131: 1258–1265

    CAS  Google Scholar 

  16. Zhang K, Ma M, Li P, Wang DH, Park JH. Adv Energy Mater, 2016, 6: 1600602

    Google Scholar 

  17. Kochuveedu ST, Jang YH, Kim DH. Chem Soc Rev, 2013, 42: 8467–8493

    CAS  PubMed  Google Scholar 

  18. Alexander BD, Kulesza PJ, Rutkowska I, Solarska R, Augustynski J. J Mater Chem, 2008, 18: 2298–2303

    CAS  Google Scholar 

  19. Shen S, Lindley SA, Chen X, Zhang JZ. Energy Environ Sci, 2016, 9: 2744–2775

    CAS  Google Scholar 

  20. Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ. Chem Rev, 2015, 115: 13006–13049

    CAS  PubMed  Google Scholar 

  21. Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L. J Am Chem Soc, 2015, 137: 9153–9159

    CAS  PubMed  Google Scholar 

  22. Li F, Yang H, Li W, Sun L. Joule, 2018, 2: 36–60

    CAS  Google Scholar 

  23. Zhang B, Sun L. Chem Soc Rev, 2019, 48: 2216–2264

    CAS  PubMed  Google Scholar 

  24. Yu Y, Curtze A, Wu Y. Sci China Chem, 2018, 61: 1203–1204

    CAS  Google Scholar 

  25. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M. Nat Chem, 2014, 6: 242–247

    CAS  PubMed  Google Scholar 

  26. Sheng J, Hu L, Mo L, Ye J, Dai S. Sci China Chem, 2017, 60: 822–828

    CAS  Google Scholar 

  27. Shen Z, Xu B, Liu P, Hu Y, Yu Y, Ding H, Kloo L, Hua J, Sun L, Tian H. J Mater Chem A, 2017, 5: 1242–1247

    CAS  Google Scholar 

  28. Mao J, Guo F, Ying W, Wu W, Li J, Hua J. Chem Asian J, 2012, 7: 982–991

    CAS  PubMed  Google Scholar 

  29. Ying W, Yang J, Wielopolski M, Moehl T, Moser JE, Comte P, Hua J, Zakeeruddin SM, Tian H, Grätzel M. Chem Sci, 2014, 5: 206–214

    CAS  Google Scholar 

  30. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M. J Am Chem Soc, 1993, 115: 6382–6390

    CAS  Google Scholar 

  31. Click KA, Beauchamp DR, Huang Z, Chen W, Wu Y. J Am Chem Soc, 2016, 138: 1174–1179

    CAS  PubMed  Google Scholar 

  32. Wang D, Eberhart MS, Sheridan MV, Hu K, Sherman BD, Nayak A, Wang Y, Marquard SL, Dares CJ, Meyer TJ. Proc Natl Acad Sci USA, 2018, 115: 8523–8528

    CAS  PubMed  Google Scholar 

  33. Alibabaei L, Dillon RJ, Reilly CE, Brennaman MK, Wee KR, Marquard SL, Papanikolas JM, Meyer TJ. ACS Appl Mater Interfaces, 2017, 9: 39018–39026

    CAS  PubMed  Google Scholar 

  34. Eberhart MS, Wang D, Sampaio RN, Marquard SL, Shan B, Brennaman MK, Meyer GJ, Dares C, Meyer TJ. J Am Chem Soc, 2017, 139: 16248–16255

    CAS  PubMed  Google Scholar 

  35. Wee KR, Sherman BD, Brennaman MK, Sheridan MV, Nayak A, Alibabaei L, Meyer TJ. J Mater Chem A, 2016, 4: 2969–2975

    CAS  Google Scholar 

  36. Sheridan MV, Wang Y, Wang D, Troian-Gautier L, Dares CJ, Sherman BD, Meyer TJ. Angew Chem Int Ed, 2018, 57: 3449–3453

    CAS  Google Scholar 

  37. Li Z, Wang W, Liao S, Liu M, Qi Y, Ding C, Li C. Energy Environ Sci, 2019, 12: 631–639

    CAS  Google Scholar 

  38. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B. J Am Chem Soc, 2013, 135: 16872–16884

    CAS  PubMed  Google Scholar 

  39. Zhang H, Li H, Wang Z, Zheng Z, Wang P, Liu Y, Zhang X, Qin X, Dai Y, Huang B. Appl Catal B-Environ, 2018, 238: 586–591

    CAS  Google Scholar 

  40. Sherman BD, Sheridan MV, Wee KR, Marquard SL, Wang D, Alibabaei L, Ashford DL, Meyer TJ. J Am Chem Soc, 2016, 138: 16745–16753

    CAS  PubMed  Google Scholar 

  41. Sherman BD, Bergkamp JJ, Brown CL, Moore AL, Gust D, Moore TA. Energy Environ Sci, 2016, 9: 1812–1817

    CAS  Google Scholar 

  42. Brillet J, Yum JH, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K. Nat Photon, 2012, 6: 824–828

    CAS  Google Scholar 

  43. Li Z, Wang W, Ding C, Wang Z, Liao S, Li C. Energy Environ Sci, 2017, 10: 765–771

    CAS  Google Scholar 

  44. Sokol KP, Robinson WE, Warnan J, Kornienko N, Nowaczyk MM, Ruff A, Zhang JZ, Reisner E. Nat Energy, 2018, 3: 944–951

    CAS  Google Scholar 

  45. Huang X, Zhao G, Wang G. J Mater Chem A, 2017, 5: 24631–24635

    CAS  Google Scholar 

  46. Ding X, Gao Y, Fan T, Ji Y, Zhang L, Yu Z, Ahlquist MSG, Sun L. Electrochim Acta, 2016, 215: 682–688

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971064, 21421004, 21772040, 21572062), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03), the Fundamental Research Funds for the Central Universities (50321101918001, 222201717003) and the Programme of Introducing Talents of Discipline to Universities (B16017). The authors thank Research Center of Analysis and Test of East China University of Science and Technology for the help on the characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianli Hua.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9596_MOESM1_ESM.pdf

Photo-driven water splitting photoelectrochemical cells by tandem organic dye sensitized solar cells with I/I3 as redox mediator

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Ye, H., Ding, H. et al. Photo-driven water splitting photoelectrochemical cells by tandem organic dye sensitized solar cells with I/I3 as redox mediator. Sci. China Chem. 63, 228–236 (2020). https://doi.org/10.1007/s11426-019-9596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9596-7

Keywords

Navigation