Skip to main content
Log in

A selective and stepwise aggregation of a new fluorescent probe for dinitrate explosive differentiation by self-adaptive host-guest interaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nitrate explosive is hard to detect due to lack of aromatic ring and weak interaction with fluorescence probe. More challenging is even to differentiate the dinitrates with multiple nitrate explosives based on photo induced electron transfer or aggregation caused fluorescence change mechanism. A highly selective dinitrate explosive probe was designed based on a new strategy—stepwise aggregation of multiple anchored fluorene dimer 8Py-2F. Compared with its monomer counterpart 2Py-F, 8Py-2F showed a selective and stepwise fluorescence quenching to dinitrate explosives—ethylene glycol (EGDN) and triethylene glycol dinitrate (TEGDN). The limits of detection (LODs) are 2.72 µM for TEGDN and 0.46 µM for EGDN, which is three orders of magnitude lower than those of 2Py-F. The stepwise quenching process is well matched with the stepwise aggregation process as evidence by scanning electron microscopy (SEM). Nuclear magnetic resonance (NMR) and quantum chemical calculation proved the interaction force between the dinitrate and 8Py-2F is hydron bonding interaction, and interaction distance is far less than that of the multiple nitrates coming from the flexibility of the chain and steric hinderance, which resulted in a self-adaptive interaction and higher selectivity. The new strategy is beneficial for the differentiation of the chemicals with similar energy level which is difficult to realize via other method, and the new method provides fluorometric probe for dinitrate explosive detection and makes it an ideal candidate for chemical detection and analysis in public safety and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McQuade DT, Pullen AE, Swager TM. Chem Rev, 2000, 100: 2537–2574

    Article  CAS  Google Scholar 

  2. Zhu C, Liu L, Yang Q, Lv F, Wang S. Chem Rev, 2012, 112: 4687–4735

    Article  CAS  Google Scholar 

  3. Roy R, Hohng S, Ha T. Nat Methods, 2008, 5: 507–516

    Article  CAS  Google Scholar 

  4. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Nat Mater, 2003, 2: 630–638

    Article  CAS  Google Scholar 

  5. Wang S, Gaylord BS, Bazan GC. J Am Chem Soc, 2004, 126: 5446–5451

    Article  CAS  Google Scholar 

  6. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  Google Scholar 

  7. Wang M, Zhang D, Zhang G, Tang Y, Wang S, Zhu D. Anal Chem, 2008, 80: 6443–6448

    Article  CAS  Google Scholar 

  8. Dong L, Miao Q, Hai Z, Yuan Y, Liang G. Anal Chem, 2015, 87: 6475–6478

    Article  CAS  Google Scholar 

  9. Xia C, Hai X, Chen XW, Wang JH. Talanta, 2017, 168: 269–278

    Article  CAS  Google Scholar 

  10. Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339–1386

    Article  CAS  Google Scholar 

  11. Swager TM. Acc Chem Res, 1998, 31: 201–207

    Article  CAS  Google Scholar 

  12. Ding D, Li K, Liu B, Tang BZ. Acc Chem Res, 2013, 46: 2441–2453

    Article  CAS  Google Scholar 

  13. Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388

    Article  CAS  Google Scholar 

  14. Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 1: 4332–4353

    Article  Google Scholar 

  15. Sun X, Wang Y, Lei Y. Chem Soc Rev, 2015, 44: 8019–8061

    Article  CAS  Google Scholar 

  16. Zhou H, Chua MH, Tang BZ, Xu J. Polym Chem, 2019, 10: 3822–3840

    Article  CAS  Google Scholar 

  17. Hu R, Kang Y, Tang BZ. Polym J, 2016, 48: 359–370

    Article  CAS  Google Scholar 

  18. Shu W, Guan C, Guo W, Wang C, Shen Y. J Mater Chem, 2012, 22: 3075

    Article  CAS  Google Scholar 

  19. Zhou C, Xu W, Zhang P, Jiang M, Chen Y, Kwok RTK, Lee MMS, Shan G, Qi R, Zhou X, Lam JWY, Wang S, Tang BZ. Adv Funct Mater, 2019, 29: 1805986

    Article  Google Scholar 

  20. Roy B, Noguchi T, Yoshihara D, Tsuchiya Y, Dawn A, Shinkai S. Org Biomol Chem, 2014, 12: 561–565

    Article  CAS  Google Scholar 

  21. Rouhi AM. Chem Eng News, 1997, 75: 14–22

    Google Scholar 

  22. Wang Y, La A, Ding Y, Liu Y, Lei Y. Adv Funct Mater, 2012, 22: 3547–3555

    Article  CAS  Google Scholar 

  23. Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S. Chem Soc Rev, 2012, 41: 1261–1296

    Article  CAS  Google Scholar 

  24. Chen L, Gao Y, Wang Y, He C, Zhu D, He Q, Cao H, Cheng J. ACS Appl Mater Interfaces, 2014, 6: 8817–8823

    Article  CAS  Google Scholar 

  25. Liu A, Liu H, Peng X, Jia J, Fu Y, He Q, Cao H, Cheng J. Anal Methods, 2018, 10: 2567–2574

    Article  CAS  Google Scholar 

  26. Ewing R. Talanta, 2001, 54: 515–529

    Article  CAS  Google Scholar 

  27. Moore DS. Rev Sci Instrum, 2004, 75: 2499–2512

    Article  CAS  Google Scholar 

  28. Walsh M. Talanta, 2001, 54: 427–438

    Article  CAS  Google Scholar 

  29. Schulte-Ladbeck R, Kolla P, Karst U. Anal Chem, 2003, 75: 731–735

    Article  CAS  Google Scholar 

  30. Batlle R, Carlsson H, Holmgren E, Colmsjö A, Crescenzi C. J Chromatogr A, 2002, 963: 73–82

    Article  CAS  Google Scholar 

  31. Laramée JA, Kocher CA, Deinzer ML. Anal Chem, 2002, 64: 2316–2322

    Article  Google Scholar 

  32. Rosengren LG. Appl Opt, 1975, 14: 1960–1976

    Article  CAS  Google Scholar 

  33. Li JS, Yu B, Fischer H, Chen W, Yalin AP. Rev Sci Instrum, 2015, 86: 031501

    Article  CAS  Google Scholar 

  34. Dunayevskiy I, Tsekoun A, Prasanna M, Go R, Patel CKN. Appl Opt, 2007, 46: 6397–6404

    Article  Google Scholar 

  35. Mukherjee A, Prasanna M, Lane M, Go R, Dunayevskiy I, Tsekoun A, Patel CKN. Appl Opt, 2008, 47: 4884–4887

    Article  CAS  Google Scholar 

  36. Mukherjee A, Dunayevskiy I, Prasanna M, Go R, Tsekoun A, Wang X, Fan J, Patel CKN. Appl Opt, 2008, 47: 1543–1548

    Article  Google Scholar 

  37. Kumar C, Patel N. High power infrared QCLs: advances and applications. In: Proceedings of Quantum Sensing and Nanophotonic Devices IX. Volume 8268. San Francisco, 2012

  38. He C, He Q, Chen Q, Shi L, Cao H, Cheng J, Deng C, Lin T. Tetrahedron Lett, 2010, 51: 1317–1321

    Article  CAS  Google Scholar 

  39. Straessler NA, Paraskos AJ, Kramer MP. Methods ofproducing nitrate esters. USA Patent, US8658818. 2014

  40. Xu W, Fu Y, Gao Y, Yao J, Fan T, Zhu D, He Q, Cao H, Cheng J. Chem Commun, 2015, 51: 10868–10870

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research program from the Ministry of Science and Technology (2017YFC0821100), the National Natural Science Foundation of China (61731016, 61771460), and a grant from the Youth Innovation Promotion Association CAS (2015190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingguo He or Jiangong Cheng.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9593_MOESM1_ESM.pdf

A Selective and stepwise aggregation of a new fluorescent probe for dinitrate explosive differentiation by self-adaptive host-guest inter-action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Xu, W., Yu, Y. et al. A selective and stepwise aggregation of a new fluorescent probe for dinitrate explosive differentiation by self-adaptive host-guest interaction. Sci. China Chem. 63, 116–125 (2020). https://doi.org/10.1007/s11426-019-9593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9593-4

Keywords

Navigation