Advertisement

Dynamic self-assembly of block copolymers regulated by time-varying building block composition via reversible chemical reaction

  • Duo Xu
  • Li Zhao
  • Kuo Zhang
  • Zhong-Yuan LuEmail author
Articles
  • 34 Downloads

Abstract

Dynamic self-assembly processes occurring out of thermodynamic equilibrium underlie many forms of adaptive and intelligent behaviors in natural systems. Because of the continuous input of energy, the dynamic self-assembly provides the opportunity for creating structures that are unattainable in equilibrium state. In this paper, we propose a strategy in the dynamic self-assembly of amphiphilic block copolymers regulated by reversible chemical reaction. By time-dependently tuning the reaction direction in the simulations, the amphiphilicity of building block keeps changing periodically. Relying on this dynamic process, we can obtain exotic self-assembled vesicle with surface pores which is otherwise metastable in an equilibrium state. The effects induced by the type of chemical reaction and the reaction period are discussed. Only at short reaction period in suitable reversible reaction, novel self-assembly structure emerges. It is attributed to the competition of reaction and diffusion in the dynamic process, by which the local component of building blocks alters a lot, leading to large local surface tension resulting in the formation of perforated vesicle. In order to predict the assembled structure in a dynamic process, we build up the relationship between component ratio P, the diffusion effect parameter Pdiff and assembled structures. The dynamic self-assembly regulated by chemical reaction holds great promise as a rational strategy to realize exotic functional materials that are not easily obtained in equilibrium.

Keywords

dynamic self-assembly block copolymer reversible reaction computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (21833008, 21534004), and JLU-STIRT Program at Jilin University.

Supplementary material

11426_2019_9589_MOESM1_ESM.pdf (182 kb)
Dynamic Self-assembly of Block Copolymers Regulated by Time-varying Building Block Composition via Reversible Chemical Reaction

References

  1. 1.
    Zhang S. Nat Biotechnol, 2003, 21: 1171–1178CrossRefGoogle Scholar
  2. 2.
    Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U. Science, 2008, 320: 1748–1752CrossRefGoogle Scholar
  3. 3.
    Lee I. Langmuir, 2013, 29: 2476–2489CrossRefGoogle Scholar
  4. 4.
    Rösler A, Vandermeulen GWM, Klok HA. Adv Drug Deliver Rev, 2012, 64: 270–279CrossRefGoogle Scholar
  5. 5.
    Whitesides GM, Grzybowski B. Science, 2002, 295: 2418–2421CrossRefGoogle Scholar
  6. 6.
    Tagliazucchi M, Olvera de la Cruz M, Szleifer I. Proc Natl Acad Sci USA, 2010, 107: 5300–5305CrossRefGoogle Scholar
  7. 7.
    Bates FS, Fredrickson GH. Annu Rev Phys Chem, 1990, 41: 525–557CrossRefGoogle Scholar
  8. 8.
    Tretiakov KV, Bishop KJM, Grzybowski BA. Soft Matter, 2009, 5: 1279–1284CrossRefGoogle Scholar
  9. 9.
    Grzybowski BA, Wiles JA, Whitesides GM. Phys Rev Lett, 2003, 90: 083903CrossRefGoogle Scholar
  10. 10.
    Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM. Soft Matter, 2009, 5: 1110–1128CrossRefGoogle Scholar
  11. 11.
    Braga C, Galindo A, Müller EA. J Chem Phys, 2014, 141: 154101CrossRefGoogle Scholar
  12. 12.
    Grzybowski BA, Fitzner K, Paczesny J, Granick S. Chem Soc Rev, 2017, 46: 5647–5678CrossRefGoogle Scholar
  13. 13.
    Fialkowski M, Bishop KJM, Klajn R, Smoukov SK, Campbell CJ, Grzybowski BA. J Phys Chem B, 2006, 110: 2482–2496CrossRefGoogle Scholar
  14. 14.
    Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O. Science, 2013, 341: 253–257CrossRefGoogle Scholar
  15. 15.
    Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. Science, 2013, 339: 936–940CrossRefGoogle Scholar
  16. 16.
    Mann S. Nat Mater, 2009, 8: 781–792CrossRefGoogle Scholar
  17. 17.
    Boekhoven J, Hendriksen WE, Koper GJM, Eelkema R, van Esch JH. Science, 2015, 349: 1075–1079CrossRefGoogle Scholar
  18. 18.
    Sherman ZM, Swan JW. ACS Nano, 2019, 13: 764–771CrossRefGoogle Scholar
  19. 19.
    Omar AK, Wu Y, Wang ZG, Brady JF. ACS Nano, 2019, 13: 560–572CrossRefGoogle Scholar
  20. 20.
    Bochicchio D, Kwangmettatam S, Kudernac T, Pavan GM. ACS Nano, 2019, 13: 4322–4334CrossRefGoogle Scholar
  21. 21.
    Bonfio C, Caumes C, Duffy CD, Patel BH, Percivalle C, Tsanakopoulou M, Sutherland JD. J Am Chem Soc, 2019, 141: 3934–3939CrossRefGoogle Scholar
  22. 22.
    Tagliazucchi M, Weiss EA, Szleifer I. Proc Natl Acad Sci USA, 2014, 111: 9751–9756CrossRefGoogle Scholar
  23. 23.
    Boekhoven J, Brizard AM, Kowlgi KNK, Koper GJM, Eelkema R, van Esch JH. Angew Chem Int Ed, 2010, 49: 4825–4828CrossRefGoogle Scholar
  24. 24.
    Zhu G, Huang Z, Xu Z, Yan LT. Acc Chem Res, 2018, 51: 900–909CrossRefGoogle Scholar
  25. 25.
    Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A. Adv Mater, 2013, 25: 2849–2853CrossRefGoogle Scholar
  26. 26.
    Whittell GR, Hager MD, Schubert US, Manners I. Nat Mater, 2011, 10: 176–188CrossRefGoogle Scholar
  27. 27.
    Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Nature, 2008, 451: 977–980CrossRefGoogle Scholar
  28. 28.
    Yang Y, Chen P, Cao Y, Huang Z, Zhu G, Xu Z, Dai X, Chen S, Miao B, Yan LT. Langmuir, 2018, 34: 9477–9488CrossRefGoogle Scholar
  29. 29.
    Li Z, Yang J, Yu G, He J, Abliz Z, Huang F. Chem Commun, 2014, 50: 2841–2843CrossRefGoogle Scholar
  30. 30.
    Español P, Warren P. Europhys Lett, 1995, 30: 191–196CrossRefGoogle Scholar
  31. 31.
    Groot RD, Warren PB. J Chem Phys, 1997, 107: 4423–4435CrossRefGoogle Scholar
  32. 32.
    Groot RD, Madden TJ. J Chem Phys, 1998, 108: 8713–8724CrossRefGoogle Scholar
  33. 33.
    Groot RD, Madden TJ, Tildesley DJ. J Chem Phys, 1999, 110: 9739–9749CrossRefGoogle Scholar
  34. 34.
    Liu H, Li M, Lu ZY, Zhang ZG, Sun CC. Macromolecules, 2009, 42: 2863–2872CrossRefGoogle Scholar
  35. 35.
    Zhu YL, Liu H, Li ZW, Qian HJ, Milano G, Lu ZY. J Comput Chem, 2013, 34: 2197–2211CrossRefGoogle Scholar
  36. 36.
    Zhang L, Yu K, Eisenberg A. Science, 1996, 272: 1777–1779CrossRefGoogle Scholar
  37. 37.
    Li S, Yu C, Zhou Y. Sci China Chem, 2019, 62: 226–237CrossRefGoogle Scholar
  38. 38.
    Arenas-Guerrero P, Delgado ÁV, Ramos A, Jiménez ML. Langmuir, 2019, 35: 687–694CrossRefGoogle Scholar
  39. 39.
    Shillcock JC, Lipowsky R. J Chem Phys, 2002, 117: 5048–5061CrossRefGoogle Scholar
  40. 40.
    Jahnig F. Biophys J, 1996, 71: 1348–1349CrossRefGoogle Scholar
  41. 41.
    Sherman ZM, Swan JW. ACS Nano, 2016, 10: 5260–5271CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin UniversityChangchunChina
  2. 2.College of Life SciencesJilin UniversityChangchunChina

Personalised recommendations