Abstract
Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and dendrite challenges of Li-metal anodes are highly influenced by the interface layer on the Li-metal anode because the intrinsic high reactivity of metallic Li results in an inevitable solid-state interface layer between the Li-metal and electrolytes. In this review, we summarize the recent progress on the interfacial chemistry regarding the interactions between electrolytes and ion migration through dynamic interfaces. The critical factors that affect the interface formation for constructing a stable interface with a low resistance are reviewed. Moreover, we review emerging strategies for rationally designing multiple-structured solid-state electrolytes and their interfaces, including the interfacial properties within hybrid electrolytes and the solid electrolyte/electrode interface. Finally, we present scientific issues and perspectives associated with Li-metal anode interfaces toward a practical Li-metal battery.
Similar content being viewed by others
References
Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403–10473
Chen X, Hou T, Persson KA, Zhang Q. Mater Today, 2019, 22: 142–158
Xin S, Chang Z, Zhang X, Guo YG. Nat Sci Rev, 2017, 4: 54–70
Chen S, Niu C, Lee H, Li Q, Yu L, Xu W, Zhang JG, Dufek EJ, Whittingham MS, Meng S, Xiao J, Liu J. Joule, 2019, 3: 1094–1105
Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Engineering, 2018, 4: 831–847
Sun YZ, Huang JQ, Zhao CZ, Zhang Q. Sci China Chem, 2017, 60: 1508–1526
Li NW, Yin YX, Xin S, Li JY, Guo YG. Small Methods, 2017, 1: 1700094
Ye H, Xin S, Yin YX, Guo YG. Adv Energy Mater, 2017, 7: 1700530
Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533–548
Duan H, Zhang J, Chen X, Zhang XD, Li JY, Huang LB, Zhang X, Shi JL, Yin YX, Zhang Q, Guo YG, Jiang L, Wan LJ. J Am Chem Soc, 2018, 140: 18051–18057
Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Chem, 2019, 5: 74–96
Li BQ, Chen XR, Chen X, Zhao CX, Zhang R, Cheng XB, Zhang Q. Research, 2019, 2019(2): 4608940
Guo YG, Chen J. Sci China Chem, 2017, 60: 1481–1482
Xu X, Wang S, Wang H, Hu C, Jin Y, Liu J, Yan H. J Energy Chem, 2018, 27: 513–527
Li L, Chen C, Yu A. Sci China Chem, 2017, 60: 1402–1412
Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Science, 2017, 358: 506–510
Bieker G, Winter M, Bieker P. Phys Chem Chem Phys, 2015, 17: 8670–8679
Cheng H, Zhu CB, Lu M, Yang Y. J Power Sources, 2007, 174: 1027–1031
Sacci RL, Black JM, Balke N, Dudney NJ, More KL, Unocic RR. Nano Lett, 2015, 15: 2011–2018
Kanamura K, Tamura H, Shiraishi S, Takehara Z-I. J Electrochem Soc, 1995, 142: 340–347
Aurbach D, Weissman I, Zaban A, Chusid O. Electrochim Acta, 1994, 39: 51–71
Aurbach D. J Power Sources, 2000, 89: 206–218
Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. Adv Sci, 2016, 3: 1500213
Peled E, Golodnitsky D, Ardel G. J Electrochem Soc, 1997, 144: L208–L210
Malmgren S, Ciosek K, Hahlin M, Gustafsson T, Gorgoi M, Rensmo H, Edström K. Electrochim Acta, 2013, 97: 23–32
Cheng XB, Yan C, Zhang XQ, Liu H, Zhang Q. ACS Energy Lett, 2018, 3: 1564–1570
Maier J. Solid State Ion, 1995, 75: 139–145
Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Chem Mater, 2016, 28: 2400–2407
Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q. J Energy Chem, 2019, 37: 29–34
Xue Y, Li Y, Zhang J, Liu Z, Zhao Y. Sci China Chem, 2018, 61: 765–786
Yan C, Cheng XB, Yao YX, Shen X, Li BQ, Li WJ, Zhang R, Huang JQ, Li H, Zhang Q. Adv Mater, 2018, 30: 1804461
Xu R, Sun Y, Wang Y, Huang J, Zhang Q. Chin Chem Lett, 2017, 28: 2235–2238
Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Joule, 2018, 2: 2016–2046
Chen X, Shen X, Li B, Peng HJ, Cheng XB, Li BQ, Zhang XQ, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 734–737
Chen X, Hou TZ, Li B, Yan C, Zhu L, Guan C, Cheng XB, Peng HJ, Huang JQ, Zhang Q. Energy Storage Mater, 2017, 8: 194–201
Chen X, Li H-, Shen X, Zhang Q. Angew Chem, 2018, 130: 16885–16889
Chen X, Zhang XQ, Li HR, Zhang Q. Batteries Supercaps, 2019, 2: 128–131
Yan C, Yao YX, Chen X, Cheng XB, Zhang XQ, Huang JQ, Zhang Q. Angew Chem, 2018, 130: 14251–14255
Cui J, Zhan TG, Zhang KD, Chen D. Chin Chem Lett, 2017, 28: 2171–2179
Zhang XQ, Chen X, Xu R, Cheng XB, Peng HJ, Zhang R, Huang JQ, Zhang Q. Angew Chem Int Ed, 2017, 56: 14207–14211
Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang J, Gogotsi Y. Nat Commun, 2017, 8: 336
Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Nat Mater, 2019, 18: 384–389
Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, Archer LA. Angew Chem Int Ed, 2018, 57: 992–996
Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Adv Funct Mater, 2018, 28: 1705838
Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Nat Energy, 2019, 4: 365–373
Yan C, Cheng XB, Tian Y, Chen X, Zhang XQ, Li WJ, Huang JQ, Zhang Q. Adv Mater, 2018, 30: 1707629
Cheng XB, Yan C, Peng HJ, Huang JQ, Yang ST, Zhang Q. Energy Storage Mater, 2018, 10: 199–205
Zhao CZ, Cheng XB, Zhang R, Peng HJ, Huang JQ, Ran R, Huang ZH, Wei F, Zhang Q. Energy Storage Mater, 2016, 3: 77–84
Cheng XB, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q. Chem, 2017, 2: 258–270
Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Joule, 2018, 2: 764–777
Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 5301–5305
Zhang XQ, Chen X, Hou LP, Li BQ, Cheng XB, Huang JQ, Zhang Q. ACS Energy Lett, 2019, 4: 411–416
Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C. Sci Adv, 2018, 4: eaau9245
Wang DY, Sinha NN, Burns JC, Aiken CP, Petibon R, Dahn JR. J Electrochem Soc, 2014, 161: A467–A472
Nie M, Demeaux J, Young BT, Heskett DR, Chen Y, Bose A, Woicik JC, Lucht BL. J Electrochem Soc, 2015, 162: A7008–A7014
Kohl M, Borrmann F, Althues H, Kaskel S. Adv Energy Mater, 2016, 6: 1502185
Shkrob IA, Wishart JF, Abraham DP. J Phys Chem C, 2015, 119: 14954–14964
Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C. Small, 2015, 11: 473–481
Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Adv Funct Mater, 2017, 27: 1605989
Lu Y, Tu Z, Archer LA. Nat Mater, 2014, 13: 961–969
von Wald Cresce A, Borodin O, Xu K. J Phys Chem C, 2012, 116: 26111–26117
Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, Liu N, Adams BD, Ma C, Liu J, Zhang JG, Xu W. Nat Energy, 2018, 3: 739–746
Ren X, Zou L, Jiao S, Mei D, Engelhard MH, Li Q, Lee H, Niu C, Adams BD, Wang C, Liu J, Zhang JG, Xu W. ACS Energy Lett, 2019, 4: 896–902
Zhao Q, Chen P, Li S, Liu X, Archer LA. J Mater Chem A, 2019, 7: 7823–7830
Li NW, Yin YX, Yang CP, Guo YG. Adv Mater, 2016, 28: 1853–1858
Li NW, Shi Y, Yin YX, Zeng XX, Li JY, Li CJ, Wan LJ, Wen R, Guo YG. Angew Chem Int Ed, 2018, 57: 1505–1509
Ye H, Yin YX, Zhang SF, Shi Y, Liu L, Zeng XX, Wen R, Guo YG, Wan LJ. Nano Energy, 2017, 36: 411–417
Wei S, Cheng Z, Nath P, Tikekar MD, Li G, Archer LA. Sci Adv, 2018, 4: eaao6243
Li NW, Yin YX, Li JY, Zhang CH, Guo YG. Adv Sci, 2017, 4: 1600400
Zheng Q, Yi H, Li X, Zhang H. J Energy Chem, 2018, 27: 1597–1617
Ji X, Zeng H, Gong X, Tsai F, Jiang T, Li RKY, Shi H, Luan S, Shi D. J Mater Chem A, 2017, 5: 24444–24452
Wang Y, Zhang Y, Hou H. J Appl Electrochem, 2017, 47: 237–248
Lyu YF, Zhang ZJ, Liu C, Geng Z, Gao LC, Chen Q. Chin J Polym Sci, 2018, 36: 78–84
Yang C, Zhang L, Liu B, Xu S, Hamann T, McOwen D, Dai J, Luo W, Gong Y, Wachsman ED, Hu L. Proc Natl Acad Sci USA, 2018, 115: 3770–3775
Zhou D, Liu R, Zhang J, Qi X, He YB, Li B, Yang QH, Hu YS, Kang F. Nano Energy, 2017, 33: 45–54
Sugihara N, Nishimura K, Nishino H, Kanehashi S, Mayumi K, Tominaga Y, Shimomura T, Ito K. Electrochim Acta, 2017, 229: 166–172
Paranjape N, Mandadapu PC, Wu G, Lin H. Polymer, 2017, 111: 1–8
Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. J Am Chem Soc, 2016, 138: 15825–15828
Duan H, Yin YX, Zeng XX, Li JY, Shi JL, Shi Y, Wen R, Guo YG, Wan LJ. Energy Storage Mater, 2018, 10: 85–91
Zhu Y, He X, Mo Y. ACS Appl Mater Interfaces, 2015, 7: 23685–23693
Thangadurai V, Narayanan S, Pinzaru D. Chem Soc Rev, 2014, 43: 4714–4727
Xin S, You Y, Wang S, Gao HC, Yin YX, Guo YG. ACS Energy Lett, 2017, 2: 1385–1394
Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS. Chem Mater, 2018, 30: 3019–3027
van den Broek J, Afyon S, Rupp JLM. Adv Energy Mater, 2016, 6: 1600736
Fu KK, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L. Energy Environ Sci, 2017, 10: 1568–1575
Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554–1560
Liu B, Gong Y, Fu K, Han X, Yao Y, Pastel G, Yang C, Xie H, Wachsman ED, Hu L. ACS Appl Mater Interfaces, 2017, 9: 18809–18815
Chinnam PR, Wunder SL. ACS Energy Lett, 2017, 2: 134–138
Wang Q, Wen Z, Jin J, Guo J, Huang X, Yang J, Chen C. Chem Commun, 2016, 52: 1637–1640
Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. J Am Chem Soc, 2016, 138: 9385–9388
Zhao E, Yu X, Wang F, Li H. Sci China Chem, 2017, 60: 1483–1493
Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 82–85
Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG. Adv Mater, 2018, 31: 1807789
Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB. Adv Mater, 2019, 31: 1805574
Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao YC, Wei F, Mai L. Joule, 2018, 2: 1991–2015
Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C, Wu H, Cui Y. Nat Energy, 2018, 3: 732–738
Zhu M, Wu J, Wang Y, Song M, Long L, Siyal SH, Yang X, Sui G. J Energy Chem, 2019, 37: 126–142
Liu J, Zhang L, Li H, Zhao P, Ren P, Shi W, Cheng P. Sci China Chem, 2019, 62: 602–608
Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546–1553
Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Sci Adv, 2018, 4: eaat5383
Liu Q, Geng Z, Han C, Fu Y, Li S, He Y, Kang F, Li B. J Power Sources, 2018, 389: 120–134
Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM. Adv Energy Mater, 2017, 7: 1701003
Chen B, Xu C, Wang H, Zhou J. Curr Appl Phys, 2019, 19: 149–154
Monroe C, Newman J. J Electrochem Soc, 2004, 151: A880
Monroe C, Newman J. J Electrochem Soc, 2005, 152: A396
Zeng XX, Yin YX, Shi Y, Zhang XD, Yao HR, Wen R, Wu XW, Guo YG. Chem, 2018, 4: 298–307
Choudhury S, Vu D, Warren A, Tikekar MD, Tu Z, Archer LA. Proc Natl Acad Sci USA, 2018, 115: 6620–6625
Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. Proc Natl Acad Sci USA, 2017, 114: 11069–11074
Zheng J, Hu YY. ACS Appl Mater Interfaces, 2018, 10: 4113–4120
Zheng J, Tang M, Hu YY. Angew Chem Int Ed, 2016, 55: 12538–12542
Yang T, Zheng J, Cheng Q, Hu YY, Chan CK. ACS Appl Mater Interfaces, 2017, 9: 21773–21780
Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan CW, Shen Y. J Am Chem Soc, 2017, 139: 13779–13785
Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan CW. Adv Mater, 2019, 31: 1806082
Murugan R, Thangadurai V, Weppner W. Angew Chem Int Ed, 2007, 46: 7778–7781
Li H. Joule, 2019, 3: 911–914
Acknowledgements
This work was supported by the National Key Research and Development Program (2016YFA0202500, 2016YFA0200102), the National Natural Science Foundation of China (21676160, 21825501, 21773264, 21805062, U1801257), Beijing Natural Science Foundation (L172023), and Tsinghua University Initiative Scientific Research Program.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Zhao, CZ., Duan, H., Huang, JQ. et al. Designing solid-state interfaces on lithium-metal anodes: a review. Sci. China Chem. 62, 1286–1299 (2019). https://doi.org/10.1007/s11426-019-9519-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-019-9519-9