Skip to main content
Log in

Lab-in-cell based on spontaneous amino-yne click polymerization

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Unnatural reaction in the living cells is a powerful tool for biological research. However, the polymerization inside cells is rarely reported. In this work, a lab-in-cell is illustrated based on our developed spontaneous amino-yne click polymerization. Carbonyl group activated terminal diyne can spontaneously polymerize with tetraphenylethene (TPE)-containing primary diamine inside cells, and polymer with weight-average molecular weight of 7,300 was yielded. By utilizing this in vivo amino-yne click polymerization and taking advantage of the aggregation-induced emission feature of TPE, a “turn-on” cell imaging was realized, and in-situ killing of cells was also acquired by destroying the structures of actin and tubulin, which cannot be realized by pre-prepared polymer. This strategy provides a useful platform and holds great promise in biochemistry and therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. Krebs EG, Beavo JA. Annu Rev Biochem, 1979, 48: 923–959

    Article  CAS  PubMed  Google Scholar 

  2. Boyce M, Bertozzi CR. Nat Methods, 2011, 8: 638–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bai Y, Feng X, Xing H, Xu Y, Kim BK, Baig N, Zhou T, Gewirth AA, Lu Y, Oldfield E, Zimmerman SC. J Am Chem Soc, 2016, 138: 11077–11080

    Article  CAS  PubMed  Google Scholar 

  4. Wang H, Wang R, Cai K, He H, Liu Y, Yen J, Wang Z, Xu M, Sun Y, Zhou X, Yin Q, Tang L, Dobrucki IT, Dobrucki LW, Chaney EJ, Boppart SA, Fan TM, Lezmi S, Chen X, Yin L, Cheng J. Nat Chem Biol, 2017, 13: 415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thirumurugan P, Matosiuk D, Jozwiak K. Chem Rev, 2013, 113: 4905–4979

    Article  CAS  Google Scholar 

  6. Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, Mullins JJ, Bradley M. Angew Chem Int Ed, 2016, 55: 15662–15666

    Article  CAS  Google Scholar 

  7. Wang F, Zhang Y, Du Z, Ren J, Qu X. Nat Commun, 2018, 9: 1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nainar S, Kubota M, McNitt C, Tran C, Popik VV, Spitale RC. J Am Chem Soc, 2017, 139: 8090–8093

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YM, Xu QY, Liu Y. Sci China Chem, 2019, 62: 549–560

    Article  CAS  Google Scholar 

  10. Jewett JC, Bertozzi CR. Chem Soc Rev, 2010, 39: 1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sletten EM, Bertozzi CR. J Am Chem Soc, 2011, 133: 17570–17573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamura T, Ueda T, Goto T, Tsukidate T, Shapira Y, Nishikawa Y, Fujisawa A, Hamachi I. Nat Commun, 2018, 9: 1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Li S, Chen H, Hu R, Li M, Lv F, Liu L, Ma Y, Wang S. Chem Commun, 2016, 52: 11004–11007

    Article  CAS  Google Scholar 

  14. Li J, Pu K. Chem Soc Rev, 2019, 48: 38–71

    Article  CAS  PubMed  Google Scholar 

  15. Wang B, Feng G, Seifrid M, Wang M, Liu B, Bazan GC. Angew Chem Int Ed, 2017, 56: 16063–16066

    Article  CAS  Google Scholar 

  16. Bao Y, Guégain E, Nicolas V, Nicolas J. Chem Commun, 2017, 53: 4489–4492

    Article  CAS  Google Scholar 

  17. Wu C, Chiu DT. Angew Chem Int Ed, 2013, 52: 3086–3109

    Article  CAS  Google Scholar 

  18. Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y. Polym Chem, 2014, 5: 356–360

    Article  CAS  Google Scholar 

  19. Li S, Chung HS, Simakova A, Wang Z, Park S, Fu L, Cohen-Karni D, Averick S, Matyjaszewski K. Biomacromolecules, 2017, 18: 475–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Venkateswaran S, Gwynne PJ, Wu M, Hardman A, Lilienkampf A, Pernagallo S, Blakely G, Swann DG, Bradley M, Gallagher MP. J Vis Exp, 2016, 117: 54382

    Google Scholar 

  21. McQuade DT, Pullen AE, Swager TM. Chem Rev, 2000, 100: 2537–2574

    Article  CAS  Google Scholar 

  22. Ding D, Li K, Qin W, Zhan R, Hu Y, Liu J, Tang BZ, Liu B. Adv Healthcare Mater, 2013, 2: 500–507

    Article  CAS  Google Scholar 

  23. Li S, Wang X, Hu R, Chen H, Li M, Wang J, Wang Y, Liu L, Lv F, Liang XJ, Wang S. Chem Mater, 2016, 28: 8669–8675

    Article  CAS  Google Scholar 

  24. Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS, Bao Z, Rao J. Adv Mater, 2015, 27: 5184–5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. Angew Chem Int Ed, 2018, 57: 3123–3127

    Article  CAS  Google Scholar 

  26. Li LL, Qiao SL, Liu WJ, Ma Y, Wan D, Pan J, Wang H. Nat Commun, 2017, 8: 1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niu J, Lunn DJ, Pusuluri A, Yoo JI, O’Malley MA, Mitragotri S, Soh HT, Hawker CJ. Nat Chem, 2017, 9: 537–545

    Article  CAS  PubMed  Google Scholar 

  28. He B, Su H, Bai T, Wu Y, Li S, Gao M, Hu R, Zhao Z, Qin A, Ling J, Tang BZ. J Am Chem Soc, 2017, 139: 5437–5443

    Article  CAS  PubMed  Google Scholar 

  29. Yao B, Mei J, Li J, Wang J, Wu H, Sun JZ, Qin A, Tang BZ. Macromolecules, 2014, 47: 1325–1333

    Article  CAS  Google Scholar 

  30. Hu X, Zhao X, He B, Zhao Z, Zheng Z, Zhang P, Shi X, Kwok RTK, Lam JWY, Qin A, Tang BZ. Research, 2018, 2018(2): 3152870

    Google Scholar 

  31. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  PubMed  Google Scholar 

  32. Keshav K, Kumawat MK, Srivastava R, Ravikanth M. Mater Chem Front, 2017, 1: 1207–1216

    Article  CAS  Google Scholar 

  33. Fang X, Chen X, Li R, Liu Z, Chen H, Sun Z, Ju B, Liu Y, Zhang SXA, Ding D, Sun Y, Wu C. Small, 2017, 13: 1702128

    Article  CAS  Google Scholar 

  34. Hu R, Xin DH, Qin AJ, Tang BZ. Acta Polym Sinica, 2018, 2: 27–36

    Google Scholar 

  35. Tang BZ, Hu R, Qin AJ. Amino-yne click polymerization inside living cells. Chinese Patent, 201811390742.4, 2018-11-21

  36. Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew Chem Int Ed, 2005, 44: 3275–3279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 21525417, 21490571), the National Program for Support of Top-Notch Young Professionals, the Natural Science Foundation of Guangdong Province (2016A030312002, 2018A030313763, 2019B030301003), the Fundamental Research Funds for the Central Universities (2015ZY013), and the Innovation and Technology Commission of Hong Kong (ITC-CNERC14S01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjun Qin or Ben Zhong Tang.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Chen, X., Zhou, T. et al. Lab-in-cell based on spontaneous amino-yne click polymerization. Sci. China Chem. 62, 1198–1203 (2019). https://doi.org/10.1007/s11426-019-9517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9517-9

Keywords

Navigation