AIEgens in cell-based multiplex fluorescence imaging

  • Yabin Zhou
  • Jin Hua
  • Ben Zhong Tang
  • Youhong TangEmail author


Fluorescence imaging is an important branch of bioimaging. It is non-invasive and provides superior spatial and temporal resolution during the real-time monitoring of biological samples of interest. Although the spatial resolution limit of optical microscopes is about 200 nm, due to the diffraction limit, with the application of super-resolution fluorescence microscopy technologies this limit has been pushed below 30 nm. This makes it feasible to visualize biological structures in subcellular levels and to monitor subcellular biological processes in real time. However, due to the complexity of the biological structure and components within cells, simultaneous staining and monitoring multiple intracellular components with different coloured fluorophores is often needed during multiplex imaging, to better understand biological processes. Aggregation-induced emission luminogens (AIEgen) and AIEgen based nanoparticles (NPs) have presented many advantages in fluorescence imaging, with strong potential for biological science and nano-medicine. Herein this review, we focus on the advantages of AIEgen and AIEgen NP in cell-based fluorescence imaging, and the latest advances of AIEgens in cell-based multiplex imaging are summarized and discussed. The future perspectives are proposed.


aggregation induced emission cell imaging multiplex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Australia-China Science and Research Fund Joint Research Centre on Personal Health Technologies, Science and Technology Bureau of Sichuan Province (China) (19YYJC1760), Sichuan Provincial Academician (Expert) Workstation (China) (2018YSGZZ03), and Sichuan University of Science and Engineering (China) (2017RCL72).


  1. 1.
    Gu X, Zhao E, Lam JWY, Peng Q, Xie Y, Zhang Y, Wong KS, Sung HHY, Williams ID, Tang BZ. Adv Mater, 2015, 27: 7093–7100CrossRefGoogle Scholar
  2. 2.
    Gu X, Zhao E, Zhao T, Kang M, Gui C, Lam JWY, Du S, Loy MMT, Tang BZ. Adv Mater, 2016, 28: 5064–5071CrossRefGoogle Scholar
  3. 3.
    Fang X, Chen X, Li R, Liu Z, Chen H, Sun Z, Ju B, Liu Y, Zhang SXA, Ding D, Sun Y, Wu C. Small, 2017, 13: 1702128CrossRefGoogle Scholar
  4. 4.
    Hell SW, Wichmann J. Opt Lett, 1994, 19: 780–782CrossRefGoogle Scholar
  5. 5.
    Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. Nature, 2006, 440: 935–939CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Kenny SJ, Hauser M, Li W, Xu K. Nat Methods, 2015, 12: 935–938CrossRefGoogle Scholar
  7. 7.
    Yuan L, Lin W, Zheng K, He L, Huang W. Chem Soc Rev, 2013, 42: 622–661CrossRefGoogle Scholar
  8. 8.
    Chen X. Nanoplatform-based Molecular Imaging. Hoboken, New Jersey: John Wiley &amp Sons, Inc., 2011. 823CrossRefGoogle Scholar
  9. 9.
    Zrazhevskiy P, Sena M, Gao X. Chem Soc Rev, 2010, 39: 4326–4354CrossRefGoogle Scholar
  10. 10.
    Birks JB. Photophysics of Aromatic Molecules. London: Wiley, 1970Google Scholar
  11. 11.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740-1741Google Scholar
  12. 12.
    Leung NLC, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam JWY, Tang BZ. Chem Eur J, 2014, 20: 15349–15353CrossRefGoogle Scholar
  13. 13.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. New York: Garland Science, 2002. 907–982Google Scholar
  14. 14.
    Li Y, Wu Y, Chang J, Chen M, Liu R, Li F. Chem Commun, 2013, 49: 11335CrossRefGoogle Scholar
  15. 15.
    Shi H, Liu J, Geng J, Tang BZ, Liu B. J Am Chem Soc, 2012, 134: 9569–9572CrossRefGoogle Scholar
  16. 16.
    Zhang C, Jin S, Yang K, Xue X, Li Z, Jiang Y, Chen WQ, Dai L, Zou G, Liang XJ. ACS Appl Mater Interfaces, 2014, 6: 8971–8975CrossRefGoogle Scholar
  17. 17.
    Li X, Jiang M, Lam JWY, Tang BZ, Qu JY. J Am Chem Soc, 2017, 139: 17022–17030CrossRefGoogle Scholar
  18. 18.
    Feng G, Qin W, Hu Q, Tang BZ, Liu B. Adv Healthcare Mater, 2015, 4: 2667–2676CrossRefGoogle Scholar
  19. 19.
    Chen W, Gao C, Liu X, Liu F, Wang F, Tang LJ, Jiang JH. Anal Chem, 2018, 90: 8736–8741CrossRefGoogle Scholar
  20. 20.
    Li S, Ling X, Lin Y, Qin A, Gao M, Tang BZ. Chem Sci, 2018, 9: 5730–5735CrossRefGoogle Scholar
  21. 21.
    Zhao M, Li Y, Peng L. Opt Express, 2014, 22: 10221–10232CrossRefGoogle Scholar
  22. 22.
    Chen M, Hu X, Liu J, Li B, Leung NLC, Viglianti L, Cheung TS, Sung HHY, Kwok RTK, Williams ID, Qin A, Lam JWY, Tang BZ. Chem Sci, 2018, 9: 7829–7834CrossRefGoogle Scholar
  23. 23.
    Leung CWT, Wang Z, Zhao E, Hong Y, Chen S, Kwok RTK, Leung ACS, Wen R, Li B, Lam JWY, Tang BZ. Adv Healthcare Mater, 2016, 5: 427–431CrossRefGoogle Scholar
  24. 24.
    Gu Y, Zhao Z, Su H, Zhang P, Liu J, Niu G, Li S, Wang Z, Kwok RTK, Ni XL, Sun J, Qin A, Lam JWY, Tang BZ. Chem Sci, 2018, 9: 6497–6502CrossRefGoogle Scholar
  25. 25.
    Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, Tang BZ. Chem Sci, 2017, 8: 5440–5446CrossRefGoogle Scholar
  26. 26.
    Gao M, Su H, Lin Y, Ling X, Li S, Qin A, Tang BZ. Chem Sci, 2017, 8: 1763–1768CrossRefGoogle Scholar
  27. 27.
    Gao M, Su H, Li S, Lin Y, Ling X, Qin A, Tang BZ. Chem Commun, 2017, 53: 921–924CrossRefGoogle Scholar
  28. 28.
    Ma H, Qin Y, Yang Z, Yang M, Ma Y, Yin P, Yang Y, Wang T, Lei Z, Yao X. ACS Appl Mater Interfaces, 2018, 10: 20064–20072CrossRefGoogle Scholar
  29. 29.
    Cheng Y, Sun C, Ou X, Liu B, Lou X, Xia F. Chem Sci, 2017, 8: 4571–4578CrossRefGoogle Scholar
  30. 30.
    Yu CYY, Zhang W, Kwok RTK, Leung CWT, Lam JWY, Tang BZ. J Mater Chem B, 2016, 4: 2614–2619CrossRefGoogle Scholar
  31. 31.
    Wang D, Lee MMS, Shan G, Kwok RTK, Lam JWY, Su H, Cai Y, Tang BZ. Adv Mater, 2018, 30: 1802105CrossRefGoogle Scholar
  32. 32.
    Niu J, Fan J, Wang X, Xiao Y, Xie X, Jiao X, Sun C, Tang B. Anal Chem, 2017, 89: 7210–7215CrossRefGoogle Scholar
  33. 33.
    Wang D, Su H, Kwok RTK, Hu X, Zou H, Luo Q, Lee MMS, Xu W, Lam JWY, Tang BZ. Chem Sci, 2018, 9: 3685–3693CrossRefGoogle Scholar
  34. 34.
    Xie G, Ma C, Zhang X, Liu H, Guo X, Yang L, Li Y, Wang K, Wei Y. Colloid Surface B, 2017, 157: 166–173CrossRefGoogle Scholar
  35. 35.
    Cai X, Mao D, Wang C, Kong D, Cheng X, Liu B. Angew Chem Int Ed, 2018, 57: 16396–16400CrossRefGoogle Scholar
  36. 36.
    Honig MG, Hume RI. J Cell Biol, 1986, 103: 171–187CrossRefGoogle Scholar
  37. 37.
    Sheng Z, Wang C, Ren F, Liu Y, Zhu B. J Environ Sci, 2019, 75: 1–13CrossRefGoogle Scholar
  38. 38.
    Leith JT, Mousa SA, Hercbergs A, Lin HY, Davis PJ. Oncotarget, 2018, 9: 37069–37075CrossRefGoogle Scholar
  39. 39.
    Huang R, Rofstad EK. J Exp Clin Cancer Res, 2018, 37: 92CrossRefGoogle Scholar
  40. 40.
    Zhao N, Li M, Yan Y, Lam JWY, Zhang YL, Zhao YS, Wong KS, Tang BZ. J Mater Chem C, 2013, 1: 4640–4646CrossRefGoogle Scholar
  41. 41.
    Wu SS, Lee JH, Koo BK. Mol Cells, 2019, 42: 104–112Google Scholar
  42. 42.
    Azevedo Portilho N, Kobayashi M, Yoshimoto M. Int J Hematol, 2019, 109: 35–40CrossRefGoogle Scholar
  43. 43.
    Budin I, de Rond T, Chen Y, Chan LJG, Petzold CJ, Keasling JD. Science, 2018, 362: 1186–1189CrossRefGoogle Scholar
  44. 44.
    Chambers JE, Kubánková M, Huber RG, Löpez-Duarte I, Avezov E, Bond PJ, Marciniak SJ, Kuimova MK. ACS Nano, 2018, 12: 4398–4407CrossRefGoogle Scholar
  45. 45.
    Smith AG, Macleod KF. J Pathol, 2019, 247: 708–718CrossRefGoogle Scholar
  46. 46.
    Napoletano F, Baron O, Vandenabeele P, Mollereau B, Fanto M. Trends Cell Biol, 2019, 29: 323–338CrossRefGoogle Scholar
  47. 47.
    Rodger CE, McWilliams TG, Ganley IG. FEBS J, 2018, 285: 1185–1202CrossRefGoogle Scholar
  48. 48.
    Zhang W, Kwok RTK, Chen Y, Chen S, Zhao E, Yu CYY, Lam JWY, Zheng Q, Tang BZ. Chem Commun, 2015, 51: 9022–9025CrossRefGoogle Scholar
  49. 49.
    Zhao N, Chen S, Hong Y, Tang BZ. Chem Commun, 2015, 51: 13599–13602CrossRefGoogle Scholar
  50. 50.
    Zhang W, Huang Y, Chen Y, Zhao E, Hong Y, Chen S, Lam JWY, Chen Y, Hou J, Tang BZ. ACS Appl Mater Interfaces, 2019, 11: 10567–10577CrossRefGoogle Scholar
  51. 51.
    Hu F, Mao D, Kenry, Cai X, Wu W, Kong D, Liu B. Angew Chem Int Ed, 2018, 57: 10182–10186CrossRefGoogle Scholar
  52. 52.
    Hu F, Cai X, Manghnani PN, Kenry K, Wu W, Liu B. Chem Sci, 2018, 9: 2756–2761CrossRefGoogle Scholar
  53. 53.
    Zhou Y, Liu H, Zhao N, Wang Z, Michael MZ, Xie N, Tang BZ, Tang Y. Sci China Chem, 2018, 61: 892–897CrossRefGoogle Scholar
  54. 54.
    Zhang P, Jiang T, Li Y, Zhao Z, Gong P, Cai L, Kwok RTK, Lam JWY, Gu X, Tang BZ. Chem Asian J, 2019, 14: 770–774CrossRefGoogle Scholar
  55. 55.
    Xiang J, Cai X, Lou X, Feng G, Min X, Luo W, He B, Goh CC, Ng LG, Zhou J, Zhao Z, Liu B, Tang BZ. ACS Appl Mater Interfaces, 2015, 7: 14965–14974CrossRefGoogle Scholar
  56. 56.
    Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Med Microbiol Immunol, 2019, 208: 131–169CrossRefGoogle Scholar
  57. 57.
    Qin W, Li K, Feng G, Li M, Yang Z, Liu B, Tang BZ. Adv Funct Mater, 2014, 24: 635–643CrossRefGoogle Scholar
  58. 58.
    Ding D, Mao D, Li K, Wang X, Qin W, Liu R, Chiam DS, Tomczak N, Yang Z, Tang BZ, Kong D, Liu B. ACS Nano, 2014, 8: 12620–12631CrossRefGoogle Scholar
  59. 59.
    Percec V, Sun HJ, Leowanawat P, Peterca M, Graf R, Spiess HW, Zeng X, Ungar G, Heiney PA. J Am Chem Soc, 2013, 135: 4129–4148CrossRefGoogle Scholar
  60. 60.
    Zhao Q, Li K, Chen S, Qin A, Ding D, Zhang S, Liu Y, Liu B, Sun JZ, Tang BZ. J Mater Chem, 2012, 22: 15128CrossRefGoogle Scholar
  61. 61.
    Qin W, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ. Adv Funct Mater, 2012, 22: 771–779CrossRefGoogle Scholar
  62. 62.
    Kumar R, Das S, Mukherjee S, Bhosale RS, Patra CR, Narayan R. Mater Sci Eng-C, 2017, 81: 580–587CrossRefGoogle Scholar
  63. 63.
    Shi X, Yu CYY, Su H, Kwok RTK, Jiang M, He Z, Lam JWY, Tang BZ. Chem Sci, 2017, 8: 7014–7024CrossRefGoogle Scholar
  64. 64.
    Wang X, Dai J, Min X, Yu Z, Cheng Y, Huang K, Yang J, Yi X, Lou X, Xia F. Anal Chem, 2018, 90: 8162–8169CrossRefGoogle Scholar
  65. 65.
    Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. Angew Chem Int Ed, 2018, 57: 3123–3127CrossRefGoogle Scholar
  66. 66.
    Zhao Y, Zhang X, Li Z, Huo S, Zhang K, Gao J, Wang H, Liang XJ. AdvMater, 2017, 29: 1601128Google Scholar
  67. 67.
    Wang X, Song P, Peng L, Tong A, Xiang Y. ACS Appl Mater Interfaces, 2016, 8: 609–616CrossRefGoogle Scholar
  68. 68.
    Wang Y, Chen Y, Wang H, Cheng Y, Zhao X. Anal Chem, 2015, 87: 5046–5049CrossRefGoogle Scholar
  69. 69.
    Yuan Y, Zhang CJ, Kwok RTK, Mao D, Tang BZ, Liu B. Chem Sci, 2017, 8: 2723–2728CrossRefGoogle Scholar
  70. 70.
    Chen S, Hong Y, Liu Y, Liu J, Leung CWT, Li M, Kwok RTK, Zhao E, Lam JWY, Yu Y, Tang BZ. J Am Chem Soc, 2013, 135: 4926–4929CrossRefGoogle Scholar
  71. 71.
    Wang J, Xia S, Bi J, Fang M, Mazi W, Zhang Y, Conner N, Luo FT, Lu HP, Liu H. Bioconjugate Chem, 2018, 29: 1406–1418CrossRefGoogle Scholar
  72. 72.
    Ma H, Yang M, Zhang S, Yin P, Wang T, Yang Y, Lei Z, Ma Y, Qin Y, Yang Z. Analyst, 2019, 144: 536–542CrossRefGoogle Scholar
  73. 73.
    Ding S, Liu M, Hong Y. Sci China Chem, 2018, 61: 882–891CrossRefGoogle Scholar
  74. 74.
    Hang Y, Cai X, Wang J, Jiang T, Hua J, Liu B. Sci China Chem, 2018, 61: 898–908CrossRefGoogle Scholar
  75. 75.
    Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413–1422CrossRefGoogle Scholar
  76. 76.
    Shetty Y, Prabhu P, Prabhakar B. Int J Pharm, 2019, 558: 29–42CrossRefGoogle Scholar
  77. 77.
    Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ. Theranostics, 2018, 8: 4925–4956CrossRefGoogle Scholar
  78. 78.
    Ma Y, Zhou H, Hu F, Pei Z, Xu Y, Shuai Q. Artificial Cells NanoMed Biotech, 2018, 46: S900–S910CrossRefGoogle Scholar
  79. 79.
    Wu D, Li Y, Yang J, Shen J, Zhou J, Hu Q, Yu G, Tang G, Chen X. ACS Appl Mater Interfaces, 2017, 9: 44392–44401CrossRefGoogle Scholar
  80. 80.
    Li J, Leung CWT, Wong DSH, Xu J, Li R, Zhao Y, Yung CYY, Zhao E, Tang BZ, Bian L. ACS Appl Mater Interfaces, 2017, doi:
  81. 81.
    Gao H, Zhang X, Chen C, Li K, Ding D. Adv Biosys, 2018, 2: 1800074CrossRefGoogle Scholar
  82. 82.
    Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Nat Methods, 2014, 11: 360–361CrossRefGoogle Scholar
  83. 83.
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Science, 2015, 348: aaa6090CrossRefGoogle Scholar
  84. 84.
    Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Nano Lett, 2019, 19: 318–330CrossRefGoogle Scholar
  85. 85.
    Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Nat Commun, 2018, 9: 1848CrossRefGoogle Scholar
  86. 86.
    Zhao Z, Chen C, Wu W, Wang F, Du L, Zhang X, Xiong Y, He X, Cai Y, Kwok RTK, Lam JWY, Gao X, Sun P, Phillips DL, Ding D, Tang BZ. Nat Commun, 2019, 10: 768CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yabin Zhou
    • 1
    • 2
  • Jin Hua
    • 1
    • 3
  • Ben Zhong Tang
    • 4
  • Youhong Tang
    • 2
    Email author
  1. 1.Faculty of Biological EngineeringSichuan University of Science and EngineeringYibinChina
  2. 2.Institute for NanoScale Science and Technology, Medical Device Research Institute, College of Science and EngineeringFlinders UniversityTonsleyAustralia
  3. 3.Discipline of Medical Biochemistry, College of Medicine and Public HealthFlinders UniversityBedford ParkAustralia
  4. 4.Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Division of Biomedical EngineeringThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations