Skip to main content
Log in

Target-activated and ratiometric photochromic probe for “double-check” detection of toxic thiols in live cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photochromic molecules can achieve reversible isomerization upon alternate light irradiations, which offers a great opportunity to improve the precision of analytes detection and imaging in complicated biological environments. Previous reported photochromic probe exhibited only mono-color switching and an initially fluorescence-ON state that may cause high background signal and impose an adverse impact on the desired sensing precision. To overcome this set-back, we developed a novel photochromic probe with an analyte-activation mode for ratiometric sensing of toxic thiols in both real water samples and live cells. The dynamic dual-fluorescence signal is released only after the fast and selective cleavage of the 2,4-dinitrophenyl sulfonate by the targeted thiophenol derivatives. Consequently, a “double-check” with synchronized dual-fluorescence blinking for analyte detection is successfully employed upon alternate light triggers with rapid response (k=7.2×10−2 s−1), high sensitivity (LOD=6.1 nM) as well as selectivity of thiophenol derivatives over other common thiol species (e.g., GSH, Cys and Hcy). The photochromic probe was successfully introduced to the fast and on-site detection of highly toxic thiophenols in real waste water samples. Moreover, by using confocal laser-scanning microscopy (CLSM) and flow cytometric analysis, the potential applications of this ratiometric photochromic probe for trace toxic thiol sensing in live cells are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irie M, Fukaminato T, Matsuda K, Kobatake S. Chem Rev, 2014, 114: 12174–12277

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Zou Q, Tian H. Adv Mater, 2013, 25: 378–399

    Article  CAS  PubMed  Google Scholar 

  3. Minkin VI. Chem Rev, 2004, 104: 2751–2776

    Article  CAS  Google Scholar 

  4. Ankenbruck N, Courtney T, Naro Y, Deiters A. Angew Chem Int Ed, 2018, 57: 2768–2798

    Article  CAS  Google Scholar 

  5. Zhang J, Tian H. Adv Opt Mater, 2018, 6: 1701278

    Article  CAS  Google Scholar 

  6. Velema WA, Szymanski W, Feringa BL. J Am Chem Soc, 2014, 136: 2178–2191

    Article  CAS  PubMed  Google Scholar 

  7. Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Angew Chem Int Ed, 2016, 55: 10978–10999

    Article  CAS  Google Scholar 

  8. Hüll K, Morstein J, Trauner D. Chem Rev, 2018, 118: 10710–10747

    Article  CAS  PubMed  Google Scholar 

  9. Simeth NA, Kneuttinger AC, Sterner R, König B. Chem Sci, 2017, 8: 6474–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vomasta D, Högner C, Branda NR, König B. Angew Chem Int Ed, 2008, 47: 7644–7647

    Article  CAS  Google Scholar 

  11. Reisinger B, Kuzmanovic N, Löffler P, Merkl R, König B, Sterner R. Angew Chem Int Ed, 2014, 53: 595–598

    Article  CAS  Google Scholar 

  12. Falenczyk C, Schiedel M, Karaman B, Rumpf T, Kuzmanovic N, Grøtli M, Sippl W, Jung M, König B. Chem Sci, 2014, 5: 4794–4799

    Article  CAS  Google Scholar 

  13. Xiao W, Chen WH, Xu XD, Li C, Zhang J, Zhuo RX, Zhang XZ. Adv Mater, 2011, 23: 3526–3530

    Article  CAS  PubMed  Google Scholar 

  14. Ruskowitz ER, Deforest CA. Nat Rev Mater, 2018, 3: 17087

    Article  CAS  Google Scholar 

  15. Jia S, Fong WK, Graham B, Boyd BJ. Chem Mater, 2018, 30: 2873–2887

    Article  CAS  Google Scholar 

  16. Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C. J Am Chem Soc, 2008, 130: 15750–15751

    Article  CAS  PubMed  Google Scholar 

  17. Roubinet B, Weber M, Shojaei H, Bates M, Bossi ML, Belov VN, Irie M, Hell SW. J Am Chem Soc, 2017, 139: 6611–6620

    Article  CAS  PubMed  Google Scholar 

  18. Roubinet B, Bossi ML, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov VN, Hell SW. Angew Chem Int Ed, 2016, 55: 15429–15433

    Article  CAS  Google Scholar 

  19. Cheng H, Yoon J, Tian H. Coordin Chem Rev, 2018, 372: 66–84

    Article  CAS  Google Scholar 

  20. Qi Q, Chi W, Li Y, Qiao Q, Chen J, Miao L, Zhang Y, Li J, Ji W, Xu T, Liu X, Yoon J, Xu Z. Chem Sci, 2019, 316: 4914–4922

    Article  Google Scholar 

  21. Xiong Y, Vargas Jentzsch A, Osterrieth JWM, Sezgin E, Sazanovich IV, Reglinski K, Galiani S, Parker AW, Eggeling C, Anderson HL. Chem Sci, 2018, 9: 3029–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Wang C, Jiang T, Guo H, Wang G, Cai X, Yang L, Zhang Y, Yu H, Wang H, Jiang K. Anal Chem, 2015, 87: 5216–5222

    Article  CAS  PubMed  Google Scholar 

  23. Xie X, Mistlberger G, Bakker E. J Am Chem Soc, 2012, 134: 16929–16932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valderrey V, Bonasera A, Fredrich S, Hecht S. Angew Chem Int Ed, 2017, 56: 1914–1918

    Article  CAS  Google Scholar 

  25. Zhang J, Fu Y, Han HH, Zang Y, Li J, He XP, Feringa BL, Tian H. Nat Commun, 2017, 8: 987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu Y, Han HH, Zhang J, He XP, Feringa BL, Tian H. J Am Chem Soc, 2018, 140: 8671–8674

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Pu S, Sun Z, Fan C, Liu G. J Phys Chem B, 2015, 119: 4673–4682

    Article  CAS  PubMed  Google Scholar 

  28. Goldberg JM, Wang F, Sessler CD, Vogler NW, Zhang DY, Loucks WH, Tzounopoulos T, Lippard SJ. J Am Chem Soc, 2018, 140: 2020–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Ma W, He XP, Tian H. ACS Appl Mater Interfaces, 2017, 9: 8498–8507

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Song KH, Tang S, Ravelo L, Cusido J, Sun C, Zhang HF, Raymo FM. J Am Chem Soc, 2018, 140: 12741–12745

    Article  CAS  PubMed  Google Scholar 

  31. Lee MH, Kim JS, Sessler JL. Chem Soc Rev, 2015, 44: 4185–4191

    Article  CAS  PubMed  Google Scholar 

  32. Wan Q, Chen S, Shi W, Li L, Ma H. Angew Chem Int Ed, 2014, 53: 10916–10920

    Article  CAS  Google Scholar 

  33. Wang J, Xu W, Yang Z, Yan Y, Xie X, Qu N, Wang Y, Wang C, Hua J. ACS Appl Mater Interfaces, 2018, 10: 31088–31095

    Article  CAS  PubMed  Google Scholar 

  34. Cheng D, Pan Y, Wang L, Zeng Z, Yuan L, Zhang X, Chang YT. J Am Chem Soc, 2017, 139: 285–292

    Article  CAS  PubMed  Google Scholar 

  35. Cao C, Liu X, Qiao Q, Zhao M, Yin W, Mao D, Zhang H, Xu Z. Chem Commun, 2014, 50: 15811–15814

    Article  CAS  Google Scholar 

  36. Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413–1422

    Article  CAS  Google Scholar 

  37. Jing T, Yan L. Sci China Chem, 2018, 61: 863–870

    Article  CAS  Google Scholar 

  38. Shao X, Kang R, Zhang Y, Huang Z, Peng F, Zhang J, Wang Y, Pan F, Zhang W, Zhao W. Anal Chem, 2014, 87: 399–405

    Article  CAS  PubMed  Google Scholar 

  39. Liu HW, Zhang XB, Zhang J, Wang QQ, Hu XX, Wang P, Tan W. Anal Chem, 2015, 87: 8896–8903

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Qian S, He Q, Yang B, Li J, Hu Y. Org Biomol Chem, 2010, 8: 3627–3630

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Li M, Kang L, Zhu W. Sci China Chem, 2017, 60: 607–613

    Article  CAS  Google Scholar 

  42. Yang GY, Li C, Fischer M, Cairo CW, Feng Y, Withers SG. Angew Chem Int Ed, 2015, 54: 5389–5393

    Article  CAS  Google Scholar 

  43. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Chem Soc Rev, 2017, 46: 7105–7123

    Article  CAS  PubMed  Google Scholar 

  44. Mo S, Tan L, Fang B, Wu Z, Su Z, Zhang Y, Yin M. Sci China Chem, 2018, 61: 1587–1593

    Article  CAS  Google Scholar 

  45. Yu D, Huang F, Ding S, Feng G. Anal Chem, 2014, 86: 8835–8841

    Article  CAS  PubMed  Google Scholar 

  46. Ma Q, Xu J, Zhang X, Zhou L, Liu H, Zhang J. Sens Actuat B-Chem, 2016, 229: 434–440

    Article  CAS  Google Scholar 

  47. Li KB, Zhou D, He XP, Chen GR. Dyes Pigments, 2015, 116: 52–57

    Article  CAS  Google Scholar 

  48. Zhou L, Lin Q, Liu S, Tan Y, Sun H. Sens Actuat B-Chem, 2017, 244: 958–964

    Article  CAS  Google Scholar 

  49. Sheng X, Ye Z, Liu S, He W, Ren J, Yin J. Dyes Pigments, 2016, 131: 84–90

    Article  CAS  Google Scholar 

  50. Yang L, Su Y, Geng Y, Zhang Y, Ren X, He L, Song X. ACS Sens, 2018, 3: 1863–1869

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 21420102004, 21878086), the Shanghai Rising-Star Program (19QA1402500), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03) and the Program of Introducing Talents of Discipline to Universities (B16017). X. Zhang was financially supported by an award from China Scholarship Council. The authors acknowledged the facilities and assistance of the Queensland Node of the Australian National Fabrication Facility (ANFF-Q), the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Zhang.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Zhang, X., Cao, F. et al. Target-activated and ratiometric photochromic probe for “double-check” detection of toxic thiols in live cells. Sci. China Chem. 62, 1204–1212 (2019). https://doi.org/10.1007/s11426-019-9490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9490-x

Keywords

Navigation