Skip to main content
Log in

Efficient triplet pair separation from intramolecular singlet fission in dibenzopentalene derivatives

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In intramolecular SF (iSF), the strong coupling nature and confinement of diffusional separation of 1(TT) limits the extraction and harnessing of triplet energy. In order to investigate the possible 1(TT) separation and the role of molecular parameters on it, a series of iSF-capable dibenzopentalene derivatives (DBPs) have been synthesized and their photoinduced dynamics are monitored. iSF takes place in DBPs, accompanied by consecutive 1(TT) separation in polycrystalline film with almost 100% yield. It is suggested the strong intermolecular coupling provided by the closely packing configuration in the film facilitates the disentanglement of correlated 1(TT). Highly efficient triplet pair separation to yield free triplets makes one step forward for utilizing triplet energy from iSF materials for further optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith MB, Michl J. Chem Rev, 2010, 110: 6891–6936

    Article  CAS  PubMed  Google Scholar 

  2. Smith MB, Michl J. Annu Rev Phys Chem, 2013, 64: 361–386

    Article  CAS  PubMed  Google Scholar 

  3. Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519

    Article  CAS  Google Scholar 

  4. Hanna MC, Nozik AJ. J Appl Phys, 2006, 100: 074510

    Article  CAS  Google Scholar 

  5. Bae YJ, Kang G, Malliakas CD, Nelson JN, Zhou J, Young RM, Wu YL, van Duyne RP, Schatz GC, Wasielewski MR. J Am Chem Soc, 2018, 140: 15140–15144

    Article  CAS  PubMed  Google Scholar 

  6. Wilson MWB, Rao A, Clark J, Kumar RSS, Brida D, Cerullo G, Friend RH. J Am Chem Soc, 2011, 133: 11830–11833

    Article  CAS  PubMed  Google Scholar 

  7. Burdett JJ, Bardeen CJ. Acc Chem Res, 2013, 46: 1312–1320

    Article  CAS  PubMed  Google Scholar 

  8. Ma L, Zhang K, Kloc C, Sun H, Michel-Beyerle ME, Gurzadyan GG. Phys Chem Chem Phys, 2012, 14: 8307–8312

    Article  CAS  PubMed  Google Scholar 

  9. Busby E, Berkelbach TC, Kumar B, Chernikov A, Zhong Y, Hlaing H, Zhu XY, Heinz TF, Hybertsen MS, Sfeir MY, Reichman DR, Nuckolls C, Yaffe O. J Am Chem Soc, 2014, 136: 10654–10660

    Article  CAS  PubMed  Google Scholar 

  10. Johnson JC, Nozik AJ, Michl J. J Am Chem Soc, 2010, 132: 16302–16303

    Article  CAS  PubMed  Google Scholar 

  11. Minami T, Nakano M. J Phys Chem Lett, 2012, 3: 145–150

    Article  CAS  Google Scholar 

  12. Eaton SW, Shoer LE, Karlen SD, Dyar SM, Margulies EA, Veldkamp BS, Ramanan C, Hartzler DA, Savikhin S, Marks TJ, Wasielewski MR. J Am Chem Soc, 2013, 135: 14701–14712

    Article  CAS  PubMed  Google Scholar 

  13. Musser AJ, Maiuri M, Brida D, Cerullo G, Friend RH, Clark J. J Am Chem Soc, 2015, 137: 5130–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang C, Tauber MJ. J Am Chem Soc, 2010, 132: 13988–13991

    Article  CAS  PubMed  Google Scholar 

  15. Busby E, Xia J, Wu Q, Low JZ, Song R, Miller JR, Zhu XY, Campos LM, Sfeir MY. Nat Mater, 2015, 14: 426–433

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Xu K, Shen L, Wu Q, He G, Wang JY, Pei J, Xia J, Sfeir MY. Nat Commun, 2018, 9: 2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Congreve DN, Lee J, Thompson NJ, Hontz E, Yost SR, Reusswig PD, Bahlke ME, Reineke S, van Voorhis T, Baldo MA. Science, 2013, 340: 334–337

    Article  CAS  PubMed  Google Scholar 

  18. Kunzmann A, Gruber M, Casillas R, Zirzlmeier J, Stanzel M, Peukert W, Tykwinski Rik R, Guldi Dirk M. Angew Chem Int Ed, 2018, 57: 10742–10747

    Article  CAS  Google Scholar 

  19. Xia J, Sanders SN, Cheng W, Low JZ, Liu J, Campos LM, Sun T. Adv Mater, 2017, 29: 1601652

    Article  CAS  Google Scholar 

  20. Breen I, Tempelaar R, Bizimana LA, Kloss B, Reichman DR, Turner DB. J Am Chem Soc, 2017, 139: 11745–11751

    Article  CAS  PubMed  Google Scholar 

  21. Stern HL, Cheminal A, Yost SR, Broch K, Bayliss SL, Chen K, Tabachnyk M, Thorley K, Greenham N, Hodgkiss JM, Anthony J, Head-Gordon M, Musser AJ, Rao A, Friend RH. Nat Chem, 2017, 9: 1205–1212

    Article  CAS  PubMed  Google Scholar 

  22. Grieco C, Kennehan ER, Rimshaw A, Payne MM, Anthony JE, Asbury JB. J Phys Chem Lett, 2017, 8: 5700–5706

    Article  CAS  PubMed  Google Scholar 

  23. Thampi A, Stern HL, Cheminal A, Tayebjee MJY, Petty Ii AJ, Anthony JE, Rao A. J Am Chem Soc, 2018, 140: 4613–4622

    Article  CAS  PubMed  Google Scholar 

  24. Sutton C, Tummala NR, Beljonne D, Brédas JL. Chem Mater, 2017, 29: 2777–2787

    Article  CAS  Google Scholar 

  25. Grieco C, Doucette GS, Pensack RD, Payne MM, Rimshaw A, Scholes GD, Anthony JE, Asbury JB. J Am Chem Soc, 2016, 138: 16069–16080

    Article  CAS  PubMed  Google Scholar 

  26. Mauck CM, Hartnett PE, Margulies EA, Ma L, Miller CE, Schatz GC, Marks TJ, Wasielewski MR. J Am Chem Soc, 2016, 138: 11749–11761

    Article  CAS  PubMed  Google Scholar 

  27. Schrauben JN, Ryerson JL, Michl J, Johnson JC. J Am Chem Soc, 2014, 136: 7363–7373

    Article  CAS  PubMed  Google Scholar 

  28. Walker BJ, Musser AJ, Beljonne D, Friend RH. Nat Chem, 2013, 5: 1019–1024

    Article  CAS  PubMed  Google Scholar 

  29. Sanders SN, Kumarasamy E, Pun AB, Appavoo K, Steigerwald ML, Campos LM, Sfeir MY. JAm Chem Soc, 2016, 138: 7289–7297

    Article  CAS  Google Scholar 

  30. Pace NA, Zhang W, Arias DH, McCulloch I, Rumbles G, Johnson JC. J Phys Chem Lett, 2017, 8: 6086–6091

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Wang R, Shen L, Tang Z, Wen C, Dong B, Liu H, Zhang C, Li X. Phys Chem Chem Phys, 2018, 20: 6330–6336

    Article  CAS  PubMed  Google Scholar 

  32. Sakai H, Inaya R, Nagashima H, Nakamura S, Kobori Y, Tkachenko NV, Hasobe T. J Phys Chem Lett, 2018, 9: 3354–3360

    Article  CAS  PubMed  Google Scholar 

  33. Pun AB, Sanders SN, Kumarasamy E, Sfeir MY, Congreve DN, Campos LM. Adv Mater, 2017, 29: 1701416

    Article  CAS  Google Scholar 

  34. Kuroda K, Yazaki K, Tanaka Y, Akita M, Sakai H, Hasobe T, Tkachenko NV, Yoshizawa M. Angew Chem, 2019, 131: 1127–1131

    Article  Google Scholar 

  35. Nakamura S, Sakai H, Nagashima H, Kobori Y, Tkachenko NV Hasobe T. ACS Energy Lett, 2019, 4: 26–31

    Article  CAS  Google Scholar 

  36. Trinh MT, Pinkard A, Pun AB, Sanders SN, Kumarasamy E, Sfeir MY, Campos LM, Roy X, Zhu XY. Sci Adv, 2017, 3: e1700241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yong CK, Musser AJ, Bayliss SL, Lukman S, Tamura H, Bubnova O, Hallani RK, Meneau A, Resel R, Maruyama M, Hotta S, Herz LM, Beljonne D, Anthony JE, Clark J, Sirringhaus H. Nat Commun, 2017, 8: 15953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Y, Wang Y, Chen J, Zhang G, Yao J, Zhang D, Fu H. Angew Chem Int Ed, 2017, 56: 9400–9404

    Article  CAS  Google Scholar 

  39. Xu F, Peng L, Orita A, Otera J. Org Lett, 2012, 14: 3970–3973

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YD, Wu Y, Xu Y, Wang Q, Liu K, Chen JW, Cao JJ, Zhang C, Fu H, Zhang HL. J Am Chem Soc, 2016, 138: 6739–6745

    Article  CAS  PubMed  Google Scholar 

  41. Stern HL, Musser AJ, Gelinas S, Parkinson P, Herz LM, Bruzek MJ, Anthony J, Friend RH, Walker BJ. Proc Natl Acad Sci USA, 2015, 112: 7656–7661

    Article  CAS  PubMed  Google Scholar 

  42. Singh S, Jones WJ, Siebrand W, Stoicheff BP, Schneider WG. J Chem Phys, 1965, 42: 330–342

    Article  CAS  Google Scholar 

  43. Völcker A, Adick HJ, Schmidt R, Brauer HD. Chem Phys Lett, 1989, 159: 103–108

    Article  Google Scholar 

  44. Wu Y, Zhen Y, Ma Y, Zheng R, Wang Z, Fu H. J Phys Chem Lett, 2010, 1: 2499–2502

    Article  CAS  Google Scholar 

  45. Korovina NV, Das S, Nett Z, Feng X, Joy J, Haiges R, Krylov AI, Bradforth SE, Thompson ME. J Am Chem Soc, 2016, 138: 617–627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573251, 21833005), the National Basic Research Program of China (2017YFA0204503), the Beijing Natural Science Foundation of China (2162011), Project of State Key Laboratory on Integrated Optoelectronics of Jilin University (IOSKL2014KF16), and the Youth Innovative Research Team of Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yishi Wu or Hongbing Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, Y., Wang, L. et al. Efficient triplet pair separation from intramolecular singlet fission in dibenzopentalene derivatives. Sci. China Chem. 62, 1037–1043 (2019). https://doi.org/10.1007/s11426-019-9482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9482-y

Keywords

Navigation