Skip to main content
Log in

Theory assisted design of N-doped tin oxides for enhanced electrochemical CO2 activation and reduction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Clearly understanding the structure-function relationship and rational design of efficient CO2 electrocatalysts are still the challenges. This article describes the molecular origin of high selectivity of formic acid on N-doped SnO2 nanoparticles, which obtained via thermal treatment of g-C3N4 and SnCl2·2H2O precursor. Combined with density functional theory (DFT) calculations, we discover that N-doping effectively introduces oxygen vacancies and increases the charge density of Sn sites, which plays a positive role in CO2 activation. In addition, N-doping further regulates the adsorption energy of *OCHO, *COOH, *H and promotes HCOOH generation. Benefited from above modulation, the obtained N-doped SnO2 catalysts with oxygen vacancies (Ov-N-SnO2) exhibit faradaic efficiency of 93% for C1 formation, 88% for HCOOH production and well-suppression of H2 evolution over a wide range of potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schreier M, Héroguel F, Steier L, Ahmad S, Luterbacher JS, Mayer MT, Luo J, Grätzel M. Nat Energy, 2017, 2: 17087

    Article  CAS  Google Scholar 

  2. Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB. J Am Chem Soc, 2018, 140: 2880–2889

    Article  CAS  PubMed  Google Scholar 

  3. Dai L, Qin Q, Wang P, Zhao X, Hu C, Liu P, Qin R, Chen M, Ou D, Xu C, Mo S, Wu B, Fu G, Zhang P, Zheng N. Sci Adv, 2017, 3: e1701069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu L, Sun X, Ma J, Zhu Q, Wu C, Yang D, Han B. Sci China Chem, 2018, 61: 228–235

    Article  CAS  Google Scholar 

  5. Li X, He X, Liu X, He LN. Sci China Chem, 2017, 60: 841–852

    Article  CAS  Google Scholar 

  6. Qiao J, Liu Y, Hong F, Zhang J. Chem Soc Rev, 2014, 43: 631–675

    Article  CAS  Google Scholar 

  7. Abanades JC, Rubin ES, Mazzotti M, Herzog HJ. Energy Environ Sci, 2017, 10: 2491–2499

    Article  CAS  Google Scholar 

  8. Sun Z, Ma T, Tao H, Fan Q, Han B. Chem, 2017, 3: 560–587

    Article  CAS  Google Scholar 

  9. Koppenol WH, Rush JD. J Phys Chem, 1987, 91: 4429–4430

    Article  CAS  Google Scholar 

  10. Wen G, Lee DU, Ren B, Hassan FM, Jiang G, Cano ZP, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Adv Energy Mater, 2018, 8: 1802427

    Article  CAS  Google Scholar 

  11. Zhang S, Kang P, Meyer TJ. J Am Chem Soc, 2014, 136: 1734–1737

    Article  CAS  PubMed  Google Scholar 

  12. Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J. Angew Chem Int Ed, 2017, 56: 505–509

    Article  CAS  Google Scholar 

  13. Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y. Angew Chem, 2017, 129: 12387–12391

    Article  Google Scholar 

  14. Lei F, Liu W, Sun Y, Xu J, Liu K, Liang L, Yao T, Pan B, Wei S, Xie Y. Nat Commun, 2016, 7: 12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Angew Chem Int Ed, 2018, 57: 6054–6059

    Article  CAS  Google Scholar 

  16. Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J. Angew Chem Int Ed, 2016, 55: 6261–6265

    Article  CAS  Google Scholar 

  17. Zheng Y, Qiao SZ. Nat Chem, 2018, 10: 899–902

    Article  CAS  Google Scholar 

  18. Chikhale LP, Patil JY, Shaikh FI, Rajgure AV, Pawar RC, Mulla IS, Suryavanshi SS. Mater Sci Semicon Proc, 2014, 27: 121–129

    Article  CAS  Google Scholar 

  19. Li Q, Wang Z, Zhang M, Hou P, Kang P. J Energy Chem, 2017, 26: 825–829

    Article  Google Scholar 

  20. Kim DW, Kim DH, Kim HJ, So HW, Hong MP. Curr Appl Phys, 2011, 11: S67–S72

    Article  Google Scholar 

  21. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat Mater, 2011, 10: 780–786

    Article  CAS  PubMed  Google Scholar 

  22. Niu P, Zhang L, Liu G, Cheng HM. Adv Funct Mater, 2012, 22: 4763–4770

    Article  CAS  Google Scholar 

  23. Liu X, Zhou K, Wang L, Wang B, Li Y. J Am Chem Soc, 2009, 131: 3140–3141

    Article  CAS  Google Scholar 

  24. Fan JCC, Goodenough JB. J Appl Phys, 1977, 48: 3524–3531

    Article  CAS  Google Scholar 

  25. Kar A, Kundu S, Patra A. J Phys Chem C, 2011, 115: 118–124

    Article  CAS  Google Scholar 

  26. Choi WK, Jung HJ, Koh SK. J Vacuum Sci Tech A, 1996, 14: 359–366

    Article  CAS  Google Scholar 

  27. Lin AWC, Armstrong NR, Kuwana T. Anal Chem, 1977, 49: 1228–1235

    Article  CAS  Google Scholar 

  28. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N. J Am Chem Soc, 2009, 131: 12290–12297

    Article  CAS  PubMed  Google Scholar 

  29. Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. J Am Chem Soc, 2017, 139: 4052–4061

    Article  CAS  PubMed  Google Scholar 

  30. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F. Nat Commun, 2014, 5: 3242

    Article  CAS  PubMed  Google Scholar 

  31. Gattrell M, Gupta N, Co A. J Electroanal Chem, 2006, 594: 1–19

    Article  CAS  Google Scholar 

  32. Garand E, Wende T, Goebbert DJ, Bergmann R, Meijer G, Neumark DM, Asmis KR. J Am Chem Soc, 2010, 132: 849–856

    Article  CAS  PubMed  Google Scholar 

  33. Firet NJ, Smith WA. ACS Catal, 2016, 7: 606–612

    Article  CAS  Google Scholar 

  34. Baruch MF, Pander Iii JE, White JL, Bocarsly AB. ACS Catal, 2015, 5: 3148–3156

    Article  CAS  Google Scholar 

  35. Gao D, Zhou H, Cai F, Wang D, Hu Y, Jiang B, Cai WB, Chen X, Si R, Yang F, Miao S, Wang J, Wang G, Bao X. Nano Res, 2017, 10: 2181–2191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21525626, 21606169, 21722608), and the Program of Introducing Talents of Discipline to Universities (B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Gong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhang, L., Li, L. et al. Theory assisted design of N-doped tin oxides for enhanced electrochemical CO2 activation and reduction. Sci. China Chem. 62, 1030–1036 (2019). https://doi.org/10.1007/s11426-019-9474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9474-0

Keywords

Navigation