Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells

  • Fuwen Zhao
  • Dan HeEmail author
  • Jingming Xin
  • Shuixing Dai
  • Han Xue
  • Li Jiang
  • Zhixiang Wei
  • Wei MaEmail author
  • Xiaowei Zhan
  • Yongfang Li
  • Chunru WangEmail author


In this work, four fused ring electron acceptors (FREAs), 2F-C5, 2F-C6, 2F-C8 and 2F-C10, are developed to investigate the effect of side-chain size on the molecular properties and photovoltaic performance of FREA systematically. The elongation of side-chains in the FREAs not only improves their solubility in the processing solvent, but also enhances their miscibility with the donor PBDB-T. It helps the FREA diffuse into the donor PBDB-T during film-formation, thus leading to the decrease in domain size and domain purity from PBDB-T:2F-C5 to PBDB-T:2F-C10 blend films in sequence. The smaller domain size affords more D/A interfaces to benefit exciton dissociation and inhibit monomolecular recombination. However, severe bimolecular recombination occurs when the domain purity decreases to a critical point. Due to the dual function of the increment of side-chain length, both short-circuit current density (JSC) and fill factor (FF) of devices exhibit an evolution of first increasing then decreasing from 2F-C5, 2F-C6, 2F-C8 to 2F-C10 based OSCs. The PBDB-T:2F-C8 based OSCs get a fine balance in morphology with moderate domain size as well as high domain purity simultaneously for the least charge carrier recombination, thus achieving the highest power conversion efficiency of 12.28% with the best JSC (21.27 mA cm−2) and FF (71.96%).

solar cells fused ring electron acceptor side-chain length morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Postdoctoral Program for Innovative Talents (BX201700253), the China Postdoctoral Science Foundation (2017M620068, 2018M630208), the National Natural Science Foundation of China (21673257, 21805288), and the Ministry of Science and Technology (2016YFA0200700).

Supplementary material

11426_2019_9453_MOESM1_ESM.pdf (870 kb)
Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells


  1. 1(a).
    Shrotriya V. Nat Photon, 2009, 3: 447–449CrossRefGoogle Scholar
  2. 1(b).
    Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC. Mater Today, 2012, 15: 36–49CrossRefGoogle Scholar
  3. 2(a).
    Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB. Appl Phys Lett, 1996, 68: 3120–3122CrossRefGoogle Scholar
  4. 2(b).
    Theander M, Yartsev A, Zigmantas D, Sundström V, Mammo W, Andersson MR, Inganäs O. Phys Rev B, 2000, 61: 12957–12963CrossRefGoogle Scholar
  5. 3(a).
    Ye L, Zhao W, Li S, Mukherjee S, Carpenter JH, Awartani O, Jiao X, Hou J, Ade H. Adv Energy Mater, 2017, 7: 1602000–1602009CrossRefGoogle Scholar
  6. 3(b).
    Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260CrossRefGoogle Scholar
  7. 4.
    Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147–1703180CrossRefGoogle Scholar
  8. 5(a).
    Lin Y, Zhan X. Mater Horiz, 2014, 1: 470–488CrossRefGoogle Scholar
  9. 5(b).
    Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447–3507CrossRefGoogle Scholar
  10. 5(c).
    Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I. Energy Environ Sci, 2016, 9: 3783–3793CrossRefGoogle Scholar
  11. 5(d).
    Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003–18021CrossRefGoogle Scholar
  12. 5(e).
    Jia B, Wu Y, Zhao F, Yan C, Zhu S, Cheng P, Mai J, Lau TK, Lu X, Su CJ, Wang C, Zhan X. Sci China Chem, 2017, 60: 257–263CrossRefGoogle Scholar
  13. 6(a).
    Dai S, Zhan X. Adv Energy Mater, 2018, 8: 1800002–1800009CrossRefGoogle Scholar
  14. 6(b).
    He D, Zhao F, Jiang L, Wang C. J Mater Chem A, 2018, 6: 8839–8854CrossRefGoogle Scholar
  15. 7(a).
    Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad SKK, Zhu J, Huo L, Bin H, Zhang ZG, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X. Adv Mater, 2017, 29: 1604155–1604163CrossRefGoogle Scholar
  16. 7(b).
    Lin Y, Zhao F, Prasad SKK, Chen JD, Cai W, Zhang Q, Chen K, Wu Y, Ma W, Gao F, Tang JX, Wang C, You W, Hodgkiss JM, Zhan X. Adv Mater, 2018, 30: 1706363–1706370CrossRefGoogle Scholar
  17. 7(c).
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  18. 7(d).
    Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144–1700150CrossRefGoogle Scholar
  19. 7(e).
    Li T, Dai S, Ke Z, Yang L, Wang J, Yan C, Ma W, Zhan X. Adv Mater, 2018, 30: 1705969–1705975fCrossRefGoogle Scholar
  20. 7(f).
    Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343CrossRefGoogle Scholar
  21. 7(g).
    Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564CrossRefGoogle Scholar
  22. 7(h).
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868–1800874CrossRefGoogle Scholar
  23. 8(a).
    Lin Y, Li T, Zhao F, Han L, Wang Z, Wu Y, He Q, Wang J, Huo L, Sun Y, Wang C, Ma W, Zhan X. Adv Energy Mater, 2016, 6: 1600854–1600862CrossRefGoogle Scholar
  24. 8(b).
    Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z. Adv Mater, 2017, 29: 1703527–1703533CrossRefGoogle Scholar
  25. 8(c).
    Ma Y, Zhang M, Yan Y, Xin J, Wang T, Ma W, Tang C, Zheng Q. Chem Mater, 2017, 29: 7942–7952CrossRefGoogle Scholar
  26. 8(d).
    Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011–15018CrossRefGoogle Scholar
  27. 9(a).
    Aldrich TJ, Swick SM, Melkonyan FS, Marks TJ. Chem Mater, 2017, 29: 10294–10298CrossRefGoogle Scholar
  28. 9(b).
    Zhang S, Yang L, Liu D, He C, Zhang J, Zhang Y, Hou J. Sci China Chem, 2017, 60: 1340–1348CrossRefGoogle Scholar
  29. 9(c).
    Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427–436CrossRefGoogle Scholar
  30. 10.
    Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv Mater, 2011, 23: 2367–2371CrossRefGoogle Scholar
  31. 11.
    Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Phys Rev Lett, 2004, 93: 216601–216604CrossRefGoogle Scholar
  32. 12.
    Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207–245216CrossRefGoogle Scholar
  33. 13(a).
    Zhao F, Wang Z, Zhang J, Zhu X, Zhang Y, Fang J, Deng D, Wei Z, Li Y, Jiang L, Wang C. Adv Energy Mater, 2016, 6: 1502120–1502125Google Scholar
  34. 13(b).
    He D, Geng X, Ding L. Polym Chem, 2016, 7: 4993–4997CrossRefGoogle Scholar
  35. 14.
    Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H. J Phys-Conf Ser, 2010, 247: 012007CrossRefGoogle Scholar
  36. 15.
    Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110CrossRefGoogle Scholar
  37. 16.
    Kim KH, Kang H, Kim HJ, Kim PS, Yoon SC, Kim BJ. Chem Mater, 2012, 24: 2373–2381CrossRefGoogle Scholar
  38. 17.
    Comyn J. Int J Adhes Adhes, 1992, 12: 145–149CrossRefGoogle Scholar
  39. 18.
    Nilsson S, Bernasik A, Budkowski A, Moons E. Macromolecules, 2007, 40: 8291–8301CrossRefGoogle Scholar
  40. 19(a).
    Duong DT, Walker B, Lin J, Kim C, Love J, Purushothaman B, Anthony JE, Nguyen TQ. J Polym Sci B Polym Phys, 2012, 50: 1405–1413CrossRefGoogle Scholar
  41. 19(b).
    Liu F, Gu Y, Wang C, Zhao W, Chen D, Briseno AL, Russell TP. Adv Mater, 2012, 24: 3947–3951CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  4. 4.National Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations