Electro-selective interconversion of living cationic and radical polymerizations

  • Jiannan Zhu
  • Xiang Hao
  • Qiang YanEmail author


Orchestrating conflicting polymerization mechanisms in a single polymerization process through one external stimulus is a prerequisite to achieve in-situ selective synthesis of different monomers. Here we report an electrochemically controlled mechanism transformation that enables selective activation of living cationic or radical polymerization via an alternating voltage and dual electrocatalysts. Using identical mixed-monomer condition, a variety of desired block copolymer structures, including diblock, multiblock, random, and tapered copolymers can be obtained by simply varying the periods or phases of the alternating potential. Moreover, merging this electro-interconverted polymerization with a flow-chemistry technique can streamline preparation of functional polymer materials with complex multiblock structure. This study would offer a new vision on large-scale electrochemical synthesis of sequence-defined polymers.


electrochemistry living polymerization mechanism interconversion radical cation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21674022, 51703034).

Supplementary material

11426_2019_9450_MOESM1_ESM.pdf (1.3 mb)
Electro-Selective Interconversion of Living Cationic and Radical Polymerizations


  1. 1.
    Leibfarth FA, Mattson KM, Fors BP, Collins HA, Hawker CJ. Angew Chem Int Ed, 2013, 52: 199–210CrossRefGoogle Scholar
  2. 2.
    McKenzie TG, Fu Q, Uchiyama M, Satoh K, Xu J, Boyer C, Kamigaito M, Qiao GG. Adv Sci, 2016, 3: 1500394CrossRefGoogle Scholar
  3. 3.
    Feng C, Huang X. Acc Chem Res, 2018, 51: 2314–2323CrossRefGoogle Scholar
  4. 4.
    Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, Read de Alaniz J, Fors BP, Hawker CJ. J Am Chem Soc, 2014, 136: 16096–16101CrossRefGoogle Scholar
  5. 5.
    Xu J, Jung K, Atme A, Shanmugam S, Boyer C. J Am Chem Soc, 2014, 136: 5508–5519CrossRefGoogle Scholar
  6. 6.
    Ogawa KA, Goetz AE, Boydston AJ. J Am Chem Soc, 2015, 137: 1400–1403CrossRefGoogle Scholar
  7. 7.
    Theriot JC, Lim CH, Yang H, Ryan MD, Musgrave CB, Miyake GM. Science, 2016, 352: 1082–1086CrossRefGoogle Scholar
  8. 8.
    Pan X, Malhotra N, Simakova A, Wang Z, Konkolewicz D, Matyjaszewski K. J Am Chem Soc, 2015, 137: 15430–15433CrossRefGoogle Scholar
  9. 9.
    Yoon HJ, Kuwabara J, Kim JH, Mirkin CA. Science, 2010, 330: 66–69CrossRefGoogle Scholar
  10. 10.
    Mohapatra H, Kleiman M, Esser-Kahn AP. Nat Chem, 2017, 9: 135–139CrossRefGoogle Scholar
  11. 11.
    McKenzie TG, Colombo E, Fu Q, Ashokkumar M, Qiao GG. Angew Chem Int Ed, 2017, 56: 12302–12306CrossRefGoogle Scholar
  12. 12.
    Jiang X, Feng C, Lu G, Huang X. ACS Macro Lett, 2014, 3: 1121–1125CrossRefGoogle Scholar
  13. 13.
    Jiang X, Li R, Feng C, Lu G, Huang X. Polym Chem, 2017, 8: 2773–2784CrossRefGoogle Scholar
  14. 14.
    Jiang X, Chun F, Lu G, Xiaoyu H. Polym Chem, 2017, 8: 1163–1176CrossRefGoogle Scholar
  15. 15.
    Xu B, Feng C, Huang X. Nat Commun, 2017, 8: 333CrossRefGoogle Scholar
  16. 16.
    Rieger PH. Electrochemistry. Berlin Heidelberg: Springer, 1994CrossRefGoogle Scholar
  17. 17.
    Horn EJ, Rosen BR, Baran PS. ACS Cent Sci, 2016, 2: 302–308CrossRefGoogle Scholar
  18. 18.
    Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319CrossRefGoogle Scholar
  19. 19.
    Magenau AJD, Strandwitz NC, Gennaro A, Matyjaszewski K. Sci-ence, 2011, 332: 81–84CrossRefGoogle Scholar
  20. 20.
    Sang W, Xu M, Yan Q. ACS Macro Lett, 2017, 6: 1337–1341CrossRefGoogle Scholar
  21. 21.
    Wang Y, Fantin M, Park S, Gottlieb E, Fu L, Matyjaszewski K. Macromolecules, 2017, 50: 7872–7879CrossRefGoogle Scholar
  22. 22.
    Sang W, Yan Q. Angew Chem Int Ed, 2018, 57: 4907–4911CrossRefGoogle Scholar
  23. 23.
    Peterson BM, Lin S, Fors BP. J Am Chem Soc, 2018, 140: 2076–2079CrossRefGoogle Scholar
  24. 24.
    Aoshima H, Uchiyama M, Satoh K, Kamigaito M. Angew Chem Int Ed, 2014, 53: 10932–10936CrossRefGoogle Scholar
  25. 25.
    Kottisch V, Michaudel Q, Fors BP. J Am Chem Soc, 2017, 139: 10665–10668CrossRefGoogle Scholar
  26. 26.
    Uchiyama M, Satoh K, Kamigaito M. Angew Chem Int Ed, 2015, 54: 1924–1928CrossRefGoogle Scholar
  27. 27.
    Satoh K, Kamigaito M, Sawamoto M. Macromolecules, 2000, 33: 5405–5410CrossRefGoogle Scholar
  28. 28.
    Kumagai S, Nagai K, Satoh K, Kamigaito M. Macromolecules, 2010, 43: 7523–7531CrossRefGoogle Scholar
  29. 29.
    Satoh K, Hashimoto H, Kumagai S, Aoshima H, Uchiyama M, Ishibashi R, Fujiki Y, Kamigaito M. Polym Chem, 2017, 8: 5002–5011CrossRefGoogle Scholar
  30. 30.
    Atobe M, Tateno H, Matsumura Y. Chem Rev, 2018, 118: 4541–4572CrossRefGoogle Scholar
  31. 31.
    Pletcher D, Green RA, Brown RCD. Chem Rev, 2018, 118: 4573–4591CrossRefGoogle Scholar
  32. 32.
    Green RA, Brown RCD, Pletcher D, Harji B. Org Process Res Dev, 2015, 19: 1424–1427CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiChina

Personalised recommendations