Identifying the general trend of activity of non-stoichiometric metal oxide phases for CO oxidation on Pd(111)

Abstract

Oxidation state changes under reaction conditions are very common in heterogeneous catalysis. However, due to the limitation of experiment and computational methods, the relation between oxidation state and catalytic activity is not clear. Herein, we obtain the most stable structures of palladium oxide films with different oxidation states on palladium metal surfaces using density functional theory calculations and a state-of-the-art optimization method, namely the particle swarm optimization. These structures clearly show the process of palladium oxide film formation on metallic surfaces. Using CO oxidation as a model reaction, we find that the activities increase first and then decrease with the increase of oxidation states, peaking at Pd4O3. Our findings offer an understanding of the phase transformation and the activity of non-stoichiometric phases.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Reuter K, Scheffler M. Phys Rev B, 2001, 65: 035406

    Article  CAS  Google Scholar 

  2. 2

    Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P. J Catal, 2012, 296: 110–119

    Article  CAS  Google Scholar 

  3. 3

    Tao FF, Shan JJ, Nguyen L, Wang Z, Zhang S, Zhang L, Wu Z, Huang W, Zeng S, Hu P. Nat Commun, 2015, 6: 7798

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Hu W, Lan J, Guo Y, Cao XM, Hu P. ACS Catal, 2016, 6: 5508–5519

    Article  CAS  Google Scholar 

  5. 5

    Yang M, Yuan H, Wang H, Hu P. Sci China Chem, 2018, 61: 457–467

    Article  CAS  Google Scholar 

  6. 6

    Wang Z, Liu X, Rooney DW, Hu P. Surf Sci, 2015, 640: 181–189

    Article  CAS  Google Scholar 

  7. 7

    Tyo EC, Yin C, Di Vece M, Qian Q, Kwon G, Lee S, Lee B, DeBartolo JE, Seifert S, Winans RE, Si R, Ricks B, Goergen S, Rutter M, Zugic B, Flytzani-Stephanopoulos M, Wang ZW, Palmer RE, Neurock M, Vajda S. ACS Catal, 2012, 2012: 2409–2423

    Article  CAS  Google Scholar 

  8. 8

    Wang J, Wang H, Hu P. Sci China Chem, 2018, 61: 336–343

    Article  CAS  Google Scholar 

  9. 9

    Duchesne PN, Chen G, Zhao X, Zheng N, Zhang P. J Phys Chem C, 2014, 118: 28861–28867

    Article  CAS  Google Scholar 

  10. 10

    Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F. Chem Rev, 2015, 115: 9869–9921

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Over H, Muhler M. Prog Surf Sci, 2003, 72: 3–17

    Article  CAS  Google Scholar 

  12. 12

    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Science, 2000, 287: 1474–1476

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Soon A, Todorova M, Delley B, Stampfl C. Phys Rev B, 2006, 73: 165424

    Article  CAS  Google Scholar 

  14. 14

    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P. Phys Rev Lett, 2002, 88: 246103

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A. Science, 2010, 330: 1797–1801

    Article  PubMed  Google Scholar 

  16. 16

    Zhang S, Shan J, Zhu Y, Frenkel AI, Patlolla A, Huang W, Yoon SJ, Wang L, Yoshida H, Takeda S, Tao FF. J Am Chem Soc, 2013, 135: 8283–8293

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Wang JB, Tsai DH, Huang TJ. J Catal, 2002, 208: 370–380

    Article  CAS  Google Scholar 

  18. 18

    Wang Z, Cao XM, Zhu J, Hu P. J Catal, 2014, 311: 469–480

    Article  CAS  Google Scholar 

  19. 19

    Falsig H, Hvolbaek B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK. Angew Chem Int Ed, 2008, 47: 4835–4839

    Article  CAS  Google Scholar 

  20. 20

    Chen Y, Vlachos DG. Ind Eng Chem Res, 2012, 51: 12244–12252

    CAS  Google Scholar 

  21. 21

    Gong XQ, Raval R, Hu P. Phys Rev Lett, 2004, 93: 106104

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Hong S, Karim A, Rahman TS, Jacobi K, Ertl G. J Catal, 2010, 276: 371–381

    Article  CAS  Google Scholar 

  23. 23

    Weaver JF, Zhang F, Pan L, Li T, Asthagiri A. Acc Chem Res, 2015, 48: 1515–1523

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Zhang F, Pan L, Li T, Diulus JT, Asthagiri A, Weaver JF. J Phys Chem C, 2014, 118: 28647–28661

    Article  CAS  Google Scholar 

  25. 25

    Zhang F, Li T, Pan L, Asthagiri A, Weaver JF. Catal Sci Technol, 2014, 4: 3826–3834

    Article  CAS  Google Scholar 

  26. 26

    Lu S, Wang Y, Liu H, Miao MS, Ma Y. Nat Commun, 2014, 5: 3666

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Wang Y, Lv J, Zhu L, Ma Y. Comput Phys Commun, 2012, 183: 2063–2070

    Article  CAS  Google Scholar 

  28. 28

    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  29. 29

    Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  30. 30

    Kresse G, Hafner J. Phys Rev B, 1994, 49: 14251–14269

    Article  CAS  Google Scholar 

  31. 31

    Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  32. 32

    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  34. 34

    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  35. 35

    Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. J Am Chem Soc, 2003, 125: 3704–3705

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Liu ZP, Hu P. J Am Chem Soc, 2003, 125: 1958–1967

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653

    Article  CAS  Google Scholar 

  38. 38

    Wu H, Qian Y, Lu S, Kan E, Lu R, Deng K, Wang H, Ma Y. Phys Chem Chem Phys, 2015, 17: 15694–15700

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Lausche AC, Medford AJ, Khan TS, Xu Y, Bligaard T, Abild-Pedersen F, Nørskov JK, Studt F. J Catal, 2013, 307: 275–282

    Article  CAS  Google Scholar 

  40. 40

    Mehar V, Kim M, Shipilin M, van den Bossche M, Gustafson J, Merte LR, Hejral U, Grönbeck H, Lundgren E, Asthagiri A, Weaver JF. ACS Catal, 2018, 8: 8553–8567

    Article  CAS  Google Scholar 

  41. 41

    Shipilin M, Gustafson J, Zhang C, Merte LR, Stierle A, Hejral U, Ruett U, Gutowski O, Skoglundh M, Carlsson PA, Lundgren E. J Phys Chem C, 2015, 119: 15469–15476

    Article  CAS  Google Scholar 

  42. 42

    Gong XQ, Liu ZP, Raval R, Hu P. J Am Chem Soc, 2004, 126: 8–9

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Jin M, Park JN, Shon JK, Kim JH, Li Z, Park YK, Kim JM. Catal Today, 2012, 185: 183–190

    Article  CAS  Google Scholar 

  44. 44

    Duan Z, Henkelman G. ACS Catal, 2014, 4: 3435–3443

    Article  CAS  Google Scholar 

  45. 45

    Engel T, Ertl G. J Chem Phys, 1978, 69: 1267–1281

    Article  CAS  Google Scholar 

  46. 46

    Szanyi J, Kuhn WK, Goodman DW. J Phys Chem, 1994, 98: 2978–2981

    Article  CAS  Google Scholar 

  47. 47

    Zhang CJ, Hu P. J Am Chem Soc, 2000, 122: 2134–2135

    Article  CAS  Google Scholar 

  48. 48

    Wang HF, Kavanagh R, Guo YL, Guo Y, Lu GZ, Hu P. Angew Chem Int Ed, 2012, 51: 6657–6661

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge UK’s national high performance computing service ARCHER (for which access was obtained via the UKCP consortium) for computing time. This work was supported by the National Natural Science Foundation of China (21333003) and Queens University Belfast for a Ph.D. studentship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Hu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hu, P. Identifying the general trend of activity of non-stoichiometric metal oxide phases for CO oxidation on Pd(111). Sci. China Chem. 62, 784–789 (2019). https://doi.org/10.1007/s11426-018-9445-7

Download citation

  • DFT
  • non-stoichiometric
  • oxide
  • CO oxidation