Self-assisted stereospecific polymerization of unmasked polar 4-methylthio-1-butene

  • Yunjie Chai
  • Chunji Wu
  • Dongtao LiuEmail author
  • Mingtao RunEmail author
  • Dongmei Cui


Stereospecific polymerization of polar olefins has always been an attractive but challenging project because the Lewis basic polar groups of monomers are usually poisonous to the Lewis acidic metal centers of the catalysts. In this contribution, thiophene-fused cyclopentadienyl scandium complexes 13 were successfully synthesized. Combined with alkylaluminium and organoborate, these complexes showed extremely low activity and no selectivity for 1-hexene polymerization. Surprisingly, highly stereo-selective coordination polymerization of unprotected polar 4-methylthio-1-butene has been achieved in high activity for the first time under the same polymerization conditions. High-molecular-weight (Mn=110×103) and perfectly syn-diotactic (rrrr>99%) poly(4-methylthio-1-butene) (P(MTB)) was afforded. Thus the methylthio-group-assisted mechanism that the unmasked methylthio group promoted the polymerization through σ-π chelation to the active scandium center together with the vinyl group was proposed. Moreover, the methylsulfonyl functionalized syndiotactic poly(1-butene) was also easily prepared by the oxidation of P(MTB). These results provided a new route for the synthesis of functionalized stereo-regular polyolefins.


self-assisted polymerization stereoselectivity polar α-olefin rare-earth metal catalyst functionalized poly(1-butene) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21674108, 21634007, 21774118), and the Science and Technology Development Project of Jilin Province (20190201067JC).

Supplementary material

11426_2018_9438_MOESM1_ESM.pdf (365 kb)
Self-Assisted Stereospecific Polymerization of Unmasked Polar 4-Methylthio-1-Butene
11426_2018_9438_MOESM2_ESM.pdf (169 kb)
checkCIF/PLATON report
11426_2018_9438_MOESM3_ESM.cif (15 kb)
Supplementary material, approximately 15.2 KB.


  1. 1.
    Boffa LS, Novak BM. Chem Rev, 2000, 100: 1479–1494CrossRefGoogle Scholar
  2. 2.
    Chen EYX. Chem Rev, 2009, 109: 5157–5214CrossRefGoogle Scholar
  3. 3.
    Franssen NMG, Reek JNH, de Bruin B. Chem Soc Rev, 2013, 42: 5809–5832CrossRefGoogle Scholar
  4. 4.
    Chen C. Nat Rev Chem, 2018, 2: 6–14CrossRefGoogle Scholar
  5. 5.
    Kesti MR, Coates GW, Waymouth RM. J Am Chem Soc, 1992, 114: 9679–9680CrossRefGoogle Scholar
  6. 6.
    Stehling UM, Stein KM, Kesti MR, Waymouth RM. Macromolecules 1998, 31: 2019–2027CrossRefGoogle Scholar
  7. 7.
    Xu G, Chung TC. Macromolecules, 2000, 33: 5803–5809CrossRefGoogle Scholar
  8. 8.
    Kim KH, Jo WH, Kwak S, Kim KU, Hwang SS, Kim J. Macro-molecules, 1999, 32: 8703–8710CrossRefGoogle Scholar
  9. 9.
    Yang XH, Liu CR, Wang C, Sun XL, Guo YH, Wang XK, Wang Z, Xie Z, Tang Y. Angew Chem Int Ed, 2009, 48: 8099–8102CrossRefGoogle Scholar
  10. 10.
    Chen Z, Li JF, Tao WJ, Sun XL, Yang XH, Tang Y. Macromolecules, 2013, 46: 2870–2875CrossRefGoogle Scholar
  11. 11.
    Imuta J, Kashiwa N, Toda Y. J Am Chem Soc, 2002, 124: 1176–1177CrossRefGoogle Scholar
  12. 12.
    Aaltonen P, Loefgren B. Macromolecules, 1995, 28: 5353–5357CrossRefGoogle Scholar
  13. 13.
    Aaltonen P, Fink G, Löfgren B, Seppälä J. Macromolecules, 1996, 29: 5255–5260CrossRefGoogle Scholar
  14. 14.
    Mecking S, Johnson LK, Wang L, Brookhart M. J Am Chem Soc, 1998, 120: 888–899CrossRefGoogle Scholar
  15. 15.
    Nakamura A, Ito S, Nozaki K. Chem Rev, 2009, 109: 5215–5244CrossRefGoogle Scholar
  16. 16.
    Long BK, Eagan JM, Mulzer M, Coates GW. Angew Chem Int Ed, 2016, 55: 7106–7110CrossRefGoogle Scholar
  17. 17.
    Jian Z, Baier MC, Mecking S. J Am Chem Soc, 2015, 137: 2836–2839CrossRefGoogle Scholar
  18. 18.
    Dai S, Sui X, Chen C. Angew Chem Int Ed, 2015, 54: 9948–9953CrossRefGoogle Scholar
  19. 19.
    Zhong S, Tan Y, Zhong L, Gao J, Liao H, Jiang L, Gao H, Wu Q. Macromolecules, 2017, 50: 5661–5669CrossRefGoogle Scholar
  20. 20.
    Fu X, Zhang L, Tanaka R, Shiono T, Cai Z. Macromolecules, 2017, 50: 9216–9221CrossRefGoogle Scholar
  21. 21.
    Chen M, Chen C. Angew Chem Int Ed, 2018, 57: 3094–3098CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Mu H, Pan L, Wang X, Li Y. ACS Catal, 2018, 8: 5963–5976CrossRefGoogle Scholar
  23. 23.
    Zou C, Pang W, Chen C. Sci China Chem, 2018, 61: 1175–1178CrossRefGoogle Scholar
  24. 24.
    Zhong L, Li G, Liang G, Gao H, Wu Q. Macromolecules, 2017, 50: 2675–2682CrossRefGoogle Scholar
  25. 25.
    Xiao Z, Zheng H, Du C, Zhong L, Liao H, Gao J, Gao H, Wu Q. Macromolecules, 2018, 51: 9110–9121CrossRefGoogle Scholar
  26. 26.
    Hu H, Chen D, Gao H, Zhong L, Wu Q. Polym Chem, 2016, 7: 529–537CrossRefGoogle Scholar
  27. 27.
    Liu D, Wang M, Wang Z, Wu C, Pan Y, Cui D. Angew Chem Int Ed, 2017, 56: 2714–2719CrossRefGoogle Scholar
  28. 28.
    Liu D, Wang R, Wang M, Wu C, Wang Z, Yao C, Liu B, Wan X, Cui D. Chem Commun, 2015, 51: 4685–4688CrossRefGoogle Scholar
  29. 29.
    Wang Z, Wang M, Liu J, Liu D, Cui D. Chem Eur J, 2017, 23: 18151–18155CrossRefGoogle Scholar
  30. 30.
    Li S, Liu D, Wang Z, Cui D. ACS Catal, 2018, 8: 6086–6093CrossRefGoogle Scholar
  31. 31.
    Liu B, Qiao K, Fang J, Wang T, Wang Z, Liu D, Xie Z, Maron L, Cui D. Angew Chem Int Ed, 2018, 57: 14896–14901CrossRefGoogle Scholar
  32. 32.
    Liu D, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D. Angew Chem Int Ed, 2015, 54: 5205–5209CrossRefGoogle Scholar
  33. 33.
    Wang R, Liu D, Li X, Zhang J, Cui D, Wan X. Macromolecules, 2016, 49: 2502–2510CrossRefGoogle Scholar
  34. 34.
    Chai Y, Wang L, Liu D, Wang Z, Run M, Cui D. Chem Eur J, 2019, 25: 2043–2050CrossRefGoogle Scholar
  35. 35.
    Wang C, Luo G, Nishiura M, Song G, Yamamoto A, Luo Y, Hou Z. Sci Adv, 2017, 3: e170101Google Scholar
  36. 36.
    Chen J, Gao Y, Wang B, Lohr TL, Marks TJ. Angew Chem Int Ed, 2017, 56: 15964–15968CrossRefGoogle Scholar
  37. 37.
    Xu TQ, Yang GW, Lu XB. ACS Catal, 2016, 6: 4907–4913CrossRefGoogle Scholar
  38. 38.
    Yan C, Xu TQ, Lu XB. Macromolecules, 2018, 51: 2240–2246CrossRefGoogle Scholar
  39. 39.
    Chien JCW, Tsai WM, Rausch MD. J Am Chem Soc, 1991, 113: 8570–8571CrossRefGoogle Scholar
  40. 40.
    Gallagher KJ, Webster RL. Chem Commun, 2014, 50: 12109–12111CrossRefGoogle Scholar
  41. 41.
    Ryabov AN, Voskoboynikov AZ. J Organomet Chem, 2005, 690: 4213–4221CrossRefGoogle Scholar
  42. 42.
    Chen R, Yao C, Wang M, Xie H, Wu C, Cui D. Organometallics, 2015, 34: 455–461CrossRefGoogle Scholar
  43. 43.
    Pan Y, Rong W, Jian Z, Cui D. Macromolecules, 2012, 45: 1248–1253CrossRefGoogle Scholar
  44. 44.
    Liu D, Luo Y, Gao W, Cui D. Organometallics, 2010, 29: 1916–1923CrossRefGoogle Scholar
  45. 45.
    Pan L, Zhang K, Nishiura M, Hou Z. Angew Chem Int Ed, 2011, 50: 12012–12015CrossRefGoogle Scholar
  46. 46.
    Busico V, Cipullo R. Prog Polymer Sci, 2001, 26: 443–533CrossRefGoogle Scholar
  47. 47.
    Yu B, Liu AH, He LN, Li B, Diao ZF, Li YN. Green Chem, 2012, 14: 957–962CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations