Fluorination-substitution effect on all-small-molecule organic solar cells

  • Qiong Wu
  • Dan DengEmail author
  • Jianqi Zhang
  • Wenjun ZouEmail author
  • Yang Yang
  • Zhen Wang
  • Huan Li
  • Ruimin Zhou
  • Kun Lu
  • Zhixiang WeiEmail author
Articles Special Topic: Photovoltaics


Due to the strong crystallinity and anisotropy of small molecules, matched molecular photoelectric properties and morphologies between small molecules and non-fullerene acceptors are especially important in all-small-molecule organic solar cells (OSCs). Introducing fluorine atoms has been proved as an effective strategy to achieve a high device performance through tuning molecular energy levels, absorption and assembly properties. Herein, we designed a novel benzodithiophene-based small molecule donor BDTF-CA with deep highest occupied molecular orbital (HOMO) energy level. All-small-molecule OSCs were fabricated by combing non-fullerene acceptor IDIC with different fluorine-atom numbers. Two or four fluorine atoms were introduced to the end-capped acceptor of IDIC, which are named as IDIC-2F and IDIC-4F, respectively. With the increase of fluorination from IDIC to IDIC-4F, the open circuit voltage (Voc) of the devices decreased, while hole and electron mobilities of the active layers increased by one order of magnitude. Contributed to the most balanced Voc, short-circuit current (Jsc) and fill factor (FF), the device based on BDTF-CA/IDIC-2F achieved the highest power conversion efficiency of 9.11%.


organic solar cells all-small-molecule fluorination blend morphology energy levels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51603051, 21534003), the Ministry of Science and Technology of China (2016YFA0200700, 2016YFF0203803), the Beijing Nova Program, the Youth Innovation Promotion Association, Chinese Academy of Sciences.

Supplementary material

11426_2018_9437_MOESM1_ESM.pdf (936 kb)
Fluorination-saturation effect on all-small molecule organic solar cells


  1. 1.
    Li Y. Acc Chem Res, 2012, 45: 723–733CrossRefGoogle Scholar
  2. 2.
    Lin Y, Zhan X. Acc Chem Res, 2016, 49: 175–183CrossRefGoogle Scholar
  3. 3.
    Ostroverkhova O. Chem Rev, 2016, 116: 13279–13412CrossRefGoogle Scholar
  4. 4.
    van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ. Nat Commun, 2015, 6: 6229–6236CrossRefGoogle Scholar
  5. 5.
    Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2016, 11: 85–90CrossRefGoogle Scholar
  6. 6.
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027–15034CrossRefGoogle Scholar
  7. 7.
    Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z. Nat Commun, 2016, 7: 13740–13747CrossRefGoogle Scholar
  8. 8.
    Zhong Y, Trinh MT, Chen R, Wang W, Khlyabich PP, Kumar B, Xu Q, Nam CY, Sfeir MY, Black C, Steigerwald ML, Loo YL, Xiao S, Ng F, Zhu XY, Nuckolls C. J Am Chem Soc, 2014, 136: 15215–15221CrossRefGoogle Scholar
  9. 9.
    Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343CrossRefGoogle Scholar
  10. 10.
    Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144–1700150CrossRefGoogle Scholar
  11. 11.
    Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423–9429CrossRefGoogle Scholar
  12. 12.
    Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J. Adv Mater, 2017, 29: 1703080–1703086CrossRefGoogle Scholar
  13. 13.
    Zhu J, Ke Z, Zhang Q, Wang J, Dai S, Wu Y, Xu Y, Lin Y, Ma W, You W, Zhan X. Adv Mater, 2017, 30: 1704713–1704719CrossRefGoogle Scholar
  14. 14.
    Jia B, Dai S, Ke Z, Yan C, Ma W, Zhan X. Chem Mater, 2018, 30: 239–245CrossRefGoogle Scholar
  15. 15.
    Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150–1707156CrossRefGoogle Scholar
  16. 16.
    Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447–3507CrossRefGoogle Scholar
  17. 17.
    Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313CrossRefGoogle Scholar
  18. 18.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  19. 19.
    Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J. Adv Energy Mater, 2017, 7: 1700183–1700192CrossRefGoogle Scholar
  20. 20.
    Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124CrossRefGoogle Scholar
  21. 21.
    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128CrossRefGoogle Scholar
  22. 22.
    Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J. J Am Chem Soc, 2018, 140: 7159–7167CrossRefGoogle Scholar
  23. 23.
    Wan J, Xu X, Zhang G, Li Y, Feng K, Peng Q. Energy Environ Sci, 2017, 10: 1739–1745CrossRefGoogle Scholar
  24. 24.
    Zhan C, Zhang X, Yao J. RSC Adv, 2015, 5: 93002–93026CrossRefGoogle Scholar
  25. 25.
    Yang L, Zhang S, He C, Zhang J, Yang Y, Zhu J, Cui Y, Zhao W, Zhang H, Zhang Y, Wei Z, Hou J. Chem Mater, 2018, 30: 2129–2134CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959CrossRefGoogle Scholar
  27. 27.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868–1800874CrossRefGoogle Scholar
  28. 28.
    Kwon OK, Park JH, Kim DW, Park SK, Park SY. Adv Mater, 2015, 27: 1951–1956CrossRefGoogle Scholar
  29. 29.
    Li H, Fang J, Zhang J, Zhou R, Wu Q, Deng D, Abdullah Adil M, Lu K, Guo X, Wei Z. Mater Chem Front, 2018, 2: 143–148CrossRefGoogle Scholar
  30. 30.
    Badgujar S, Song CE, Oh S, Shin WS, Moon SJ, Lee JC, Jung IH, Lee SK. J Mater Chem A, 2016, 4: 16335–16340CrossRefGoogle Scholar
  31. 31.
    Yang L, Zhang S, He C, Zhang J, Yao H, Yang Y, Zhang Y, Zhao W, Hou J. J Am Chem Soc, 2017, 139: 1958–1966CrossRefGoogle Scholar
  32. 32.
    Qiu B, Xue L, Yang Y, Bin H, Zhang Y, Zhang C, Xiao M, Park K, Morrison W, Zhang ZG, Li Y. Chem Mater, 2017, 29: 7543–7553CrossRefGoogle Scholar
  33. 33.
    Zhang M, Guo X, Zhang S, Hou J. Adv Mater, 2013, 26: 1118–1123CrossRefGoogle Scholar
  34. 34.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328–1337CrossRefGoogle Scholar
  36. 36.
    Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su CJ, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138: 2973–2976CrossRefGoogle Scholar
  37. 37.
    Bin H, Yao J, Yang Y, Angunawela I, Sun C, Gao L, Ye L, Qiu B, Xue L, Zhu C, Yang C, Zhang ZG, Ade H, Li Y. Adv Mater, 2018, 30: 1706361–1706367CrossRefGoogle Scholar
  38. 38.
    Wang Y, Chang M, Kan B, Wan X, Li C, Chen Y. ACS Appl Energy Mater, 2018, 1: 2150–2156CrossRefGoogle Scholar
  39. 39.
    Li H, Wu Q, Zhou R, Shi Y, Yang C, Zhang Y, Zhang J, Zou W, Deng D, Lu K, Wei Z. Adv Energy Mater, 2019, 9: 1803175CrossRefGoogle Scholar
  40. 40.
    Adil MA, Zhang J, Deng D, Wang Z, Yang Y, Wu Q, Wei Z. ACS Appl Mater Interfaces, 2018, 10: 31526–31534CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Sino-Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations