Skip to main content

A high-energy-density sodium-ion full battery based on tin anode

Abstract

Sodium-ion batteries (SIBs) have been considered as promising candidates for large-scale energy storage, owing to the high abundance and low cost of sodium (Na) resources. However, the development of full SIB has been hindered by low energy density because of the sluggish kinetics of large Na+. Here, we report a full SIB with commercial tin (Sn) anode, cross-linked Na3V2(PO4)3/carbon nanotubes composites (NVP-CNT) cathode, and ether-based electrolyte. Sn is capable of delivering high reversible capacity via formation of Na15Sn4 and stable solid-electrolyte interface (SEI) in initial cycles. Meanwhile, the NASICON-type NVP enables ultrafast and stable Na+ intercalation/extraction, and the incorporation of CNT can improve its electrical conductivity. The assembled full SIB delivers high output voltage of ~3.2 V, high energy density of 253.4 W h kg−1 at 1600 W kg−1 based on total mass of both cathode and anode, and remarkable capacity retention of 96.1% after 180 cycles. These merit construction of high-energy full SIBs and will promote the development of SIBs.

This is a preview of subscription content, access via your institution.

References

  1. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. Energy Environ Sci, 2017, 10: 1051–1074

    Article  CAS  Google Scholar 

  2. Peng L, Zhu Y, Chen D, Ruoff RS, Yu G. Adv Energy Mater, 2016, 6: 1600025

    Article  CAS  Google Scholar 

  3. Vaalma C, Buchholz D, Weil M, Passerini S. Nat Rev Mater, 2018, 3: 18013

    Article  Google Scholar 

  4. Zhao Q, Lu Y, Chen J. Adv Energy Mater, 2017, 7: 1601792

    Article  CAS  Google Scholar 

  5. Xiong X, Yang C, Wang G, Lin Y, Ou X, Wang JH, Zhao B, Liu M, Lin Z, Huang K. Energy Environ Sci, 2017, 10: 1757–1763

    Article  CAS  Google Scholar 

  6. Guo JZ, Yang AB, Gu ZY, Wu XL, Pang WL, Ning QL, Li WH, Zhang JP, Su ZM. ACS Appl Mater Interfaces, 2018, 10: 17903–17910

    Article  CAS  PubMed  Google Scholar 

  7. Oh SM, Myung ST, Hwang JY, Scrosati B, Amine K, Sun YK. Chem Mater, 2014, 26: 6165–6171

    Article  CAS  Google Scholar 

  8. Wang YY, Hou BH, Guo JZ, Ning QL, Pang WL, Wang J, Lü CL, Wu XL. Adv Energy Mater, 2018, 8: 1703252

    Article  CAS  Google Scholar 

  9. Cho JS, Won JM, Lee JK, Kang YC. Nano Energy, 2016, 26: 466–478

    Article  CAS  Google Scholar 

  10. Jeong SY, Park SK, Kang YC, Cho JS. Chem Eng J, 2018, 351: 559–568

    Article  CAS  Google Scholar 

  11. Deng J, Luo WB, Chou SL, Liu HK, Dou SX. Adv Energy Mater, 2018, 8: 1701428

    Article  CAS  Google Scholar 

  12. Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu YS, Li H, Yang XQ, Chen L, Huang X. Nat Commun, 2013, 4: 2365

    Article  PubMed  Google Scholar 

  13. Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. ACS Nano, 2013, 7: 6378–6386

    Article  CAS  PubMed  Google Scholar 

  14. Cho JS, Park JS, Kang YC. Nano Res, 2017, 10: 897–907

    Article  CAS  Google Scholar 

  15. Slater MD, Kim D, Lee E, Johnson CS. Adv Funct Mater, 2013, 23: 947–958

    Article  CAS  Google Scholar 

  16. Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, Chen J. Angew Chem Int Ed, 2018, 57: 4687–4691

    Article  CAS  Google Scholar 

  17. Wang L, Wang C, Zhang N, Li F, Cheng F, Chen J. ACS Energy Lett, 2017, 2: 256–262

    Article  CAS  Google Scholar 

  18. Zhu Z, Cheng F, Hu Z, Niu Z, Chen J. J Power Sources, 2015, 293: 626–634

    Article  CAS  Google Scholar 

  19. Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K. Adv Funct Mater, 2015, 25: 534–541

    Article  CAS  Google Scholar 

  20. Oh S, Kim J, Kang Y, Cho J. Nanosale, 2018, 10: 18734–1874

    CAS  Google Scholar 

  21. Chen Y, Hu X, Evanko B, Sun X, Li X, Hou T, Cai S, Zheng C, Hu W, Stucky GD. Nano Energy, 2018, 46: 117–127

    Article  CAS  Google Scholar 

  22. Hariharan S, Saravanan K, Balaya P. Electrochem Commun, 2013, 31: 5–9

    Article  CAS  Google Scholar 

  23. Sun Q, Ren QQ, Li H, Fu ZW. Electrochem Commun, 2011, 13: 1462–1464

    Article  CAS  Google Scholar 

  24. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Adv Funct Mater, 2015, 25: 214–220

    Article  CAS  Google Scholar 

  25. Xu Y, Zhu Y, Liu Y, Wang C. Adv Energy Mater, 2013, 3: 128–133

    Article  CAS  Google Scholar 

  26. Zhang B, Rousse G, Foix D, Dugas R, Corte DAD, Tarascon JM. Adv Mater, 2016, 28: 9824–9830

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, Wang L, Li F, Cheng F, Chen J. Adv Mater, 2017, 29: 1702212

    Article  CAS  Google Scholar 

  28. Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G. Energy Environ Sci, 2016, 9: 3399–3405

    Article  CAS  Google Scholar 

  29. Wang Y, Xiao R, Hu YS, Avdeev M, Chen L. Nat Commun, 2015, 6: 6954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang N, Bai Z, Qian Y, Yang J. Adv Mater, 2016, 28: 4126–4133

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Dong Y, Xu L, Xu X, He L, Mai L. Adv Mater, 2014, 26: 3545–3553

    Article  CAS  PubMed  Google Scholar 

  32. Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D, Chen L. Adv Energy Mater, 2013, 3: 156–160

    Article  CAS  Google Scholar 

  33. An Q, Xiong F, Wei Q, Sheng J, He L, Ma D, Yao Y, Mai L. Adv Energy Mater, 2015, 5: 1401963

    Article  CAS  Google Scholar 

  34. Jian Z, Xing Z, Bommier C, Li Z, Ji X. Adv Energy Mater, 2016, 6: 1501874

    Article  CAS  Google Scholar 

  35. Xie J, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS. Solid State Ion, 2010, 181: 1611–1615

    Article  CAS  Google Scholar 

  36. Rui XH, Yesibolati N, Li SR, Yuan CC, Chen CH. Solid State Ion, 2011, 187: 58–63

    Article  CAS  Google Scholar 

  37. Choi SH, Ko YN, Lee JK, Kang YC. Adv Funct Mater, 2015, 25: 1780–1788

    Article  CAS  Google Scholar 

  38. Ma H, Zhang S, Ji W, Tao Z, Chen J. J Am Chem Soc, 2008, 130: 5361–5367

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Mu C, Li H, Li F. Inorg Chem Front, 2018, 5: 2522–2526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2017YFA0206700), and the National Natural Science Foundation of China (21822506, 51671107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujun Li.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, M., Wang, C., Du, D. et al. A high-energy-density sodium-ion full battery based on tin anode. Sci. China Chem. 62, 616–621 (2019). https://doi.org/10.1007/s11426-018-9422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9422-y

Keywords

  • sodium-ion battery
  • Sn
  • Na3V2(PO4)3-CNT
  • ether-based electrolyte
  • energy density