Skip to main content
Log in

Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines

  • Articles
  • Special Issue: Dedicated to the 100th Anniversary of Nankai University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Based on the mixed ligands XN (4′-(4-pyridine)4,2′:2′,4″-terpyridine) and isophthalic acid (IPA), three new metal-organic frameworks (MOFs) {[M2(XN)2(IPA)2]•2H2O}n (M=Co (1), Mn (2), Ni (3)) were assembled and structurally characterized, presenting 3D pillar-chain feature structures. Stability measurements demonstrate that these compounds possess high thermostability and can endure different organic solvents as well as various acid/base solutions with pH range of 1 to 14. Importantly, compounds 13 can serve as high-efficiency catalysts for the transformation of CO2 and aziridines to form high-value oxazolidinones under mild conditions, exhibiting excellent cyclicity at least five times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang XB, Xu J. Appl Energy, 2018, 211: 1021–1029

    Article  CAS  Google Scholar 

  2. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD. Int J Greenh Gas Control, 2008, 2: 9–20

    Article  CAS  Google Scholar 

  3. Pervaiz M, Sain MM. Resour C Recycl, 2003, 39: 325–340

    Article  Google Scholar 

  4. Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S. Angew Chem Int Ed, 2014, 53: 2615–2619

    Article  CAS  Google Scholar 

  5. Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, Cramer CJ, Stoddart JF, Hupp JT, Farha OK. J Am Chem Soc, 2014, 136: 15861–15864

    Article  CAS  PubMed  Google Scholar 

  6. Kang XM, Wang WM, Yao LH, Ren HX, Zhao B. Dalton Trans, 2018, 47: 6986–6994

    Article  CAS  PubMed  Google Scholar 

  7. Tang L, Zhang S, Wu Q, Wang X, Wu H, Jiang Z. J Mater Chem A, 2018, 6: 2964–2973

    Article  CAS  Google Scholar 

  8. Correa A, León T, Martin R. J Am Chem Soc, 2014, 136: 1062–1069

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Liu XF, Cao CS, Zhao B, Cheng P, He LN. Adv Sci, 2016, 3: 1600048

    Article  CAS  Google Scholar 

  10. Cao CS, Shi Y, Xu H, Zhao B. Dalton Trans, 2018, 47: 4545–4553

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Gao WY, Niu Z, Wojtas L, Perman JA, Chen YS, Li Z, Aguila B, Ma S. Chem Commun, 2018, 54: 1170–1173

    Article  CAS  Google Scholar 

  12. Guo X, Zhou Z, Chen C, Bai J, He C, Duan C. ACS Appl Mater Interfaces, 2016, 8: 31746–31756

    Article  CAS  PubMed  Google Scholar 

  13. Zhang G, Yang H, Fei H. ACS Catal, 2018, 8: 2519–2525

    Article  CAS  Google Scholar 

  14. Yang Q, Xu Q, Yu SH, Jiang HL. Angew Chem Int Ed, 2016, 55: 3685–3689

    Article  CAS  Google Scholar 

  15. Zhao D, Liu XH, Zhu C, Kang YS, Wang P, Shi Z, Lu Y, Sun WY. ChemCatChem, 2017, 9: 4598–4606

    Article  CAS  Google Scholar 

  16. Jiang HL, Akita T, Ishida T, Haruta M, Xu Q. J Am Chem Soc, 2011, 133: 1304–1306

    Article  CAS  PubMed  Google Scholar 

  17. Mukhtar TA, Wright GD. Chem Rev, 2005, 105: 529–542

    Article  CAS  PubMed  Google Scholar 

  18. Aurelio L, Brownlee RTC, Hughes AB. Chem Rev, 2004, 104: 5823–5846

    Article  CAS  PubMed  Google Scholar 

  19. Barbachyn MR, Ford CW. Angew Chem Int Ed, 2003, 42: 2010–2023

    Article  CAS  Google Scholar 

  20. Jiang HF, Ye JW, Qi CR, Huang LB. Tetrahedron Lett, 2010, 51: 928–932

    Article  CAS  Google Scholar 

  21. Tascedda P, Duñach E. Chem Commun, 2000, 449–450

    Google Scholar 

  22. Sudo A, Morioka Y, Sanda F, Endo T. Tetrahedron Lett, 2004, 45: 1363–1365

    Article  CAS  Google Scholar 

  23. Kang XM, Cheng RR, Xu H, Wang WM, Zhao B. Chem Eur J, 2017, 23: 13289–13293

    Article  CAS  PubMed  Google Scholar 

  24. Zhai B, Xu H, Li ZY, Cao CS, Zhao B. Sci China Chem, 2017, 60: 1328–1333

    Article  CAS  Google Scholar 

  25. Hu HC, Hu HS, Zhao B, Cui P, Cheng P, Li J. Angew Chem Int Ed, 2015, 54: 11681–11685

    Article  CAS  Google Scholar 

  26. Wang WM, Wu ZL, Zhang YX, Wei HY, Gao HL, Cui JZ. Inorg Chem Front, 2018, 5: 2346–2354

    Article  CAS  Google Scholar 

  27. Ren J, Liu Y, Chen Z, Xiong G, Zhao B. Sci China Chem, 2012, 55: 1073–1078

    Article  CAS  Google Scholar 

  28. Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P. Angew Chem Int Ed, 2016, 55: 4938–4942

    Article  CAS  Google Scholar 

  29. Shi PF, Xiong G, Zhang ZY, Zhao B. Sci Sin Chim, 2013, 43: 1262

    Article  CAS  Google Scholar 

  30. Cui P, Ma YG, Li HH, Zhao B, Li JR, Cheng P, Balbuena PB, Zhou HC. J Am Chem Soc, 2012, 134: 18892–18895

    Article  CAS  PubMed  Google Scholar 

  31. Shi PF, Zhao B, Xiong G, Hou YL, Cheng P. Chem Commun, 2012, 48: 8231–8233

    Article  CAS  Google Scholar 

  32. Xu H, Cao CS, Zhao B. Chem Commun, 2015, 51: 10280–10283

    Article  CAS  Google Scholar 

  33. Dong DP, Liu T, Kanegawa S, Kang S, Sato O, He C, Duan CY. Angew Chem Int Ed, 2012, 51: 5119–5123

    Article  CAS  Google Scholar 

  34. Kang XM, Fan XY, Hao PY, Wang WM, Zhao B. Inorg Chem Front, 2019, 6: 271–277

    Article  CAS  Google Scholar 

  35. Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S. Angew Chem, 2014, 126: 2653–2657

    Article  Google Scholar 

  36. Jiang W, Yang J, Liu YY, Song SY, Ma JF. Chem Eur J, 2016, 22: 16991–16997

    Article  CAS  PubMed  Google Scholar 

  37. Ding LG, Yao BJ, Jiang WL, Li JT, Fu QJ, Li YA, Liu ZH, Ma JP, Dong YB. Inorg Chem, 2017, 56: 2337–2344

    Article  CAS  PubMed  Google Scholar 

  38. Liu XH, Ma JG, Niu Z, Yang GM, Cheng P. Angew Chem, 2015, 127: 1002–1005

    Article  Google Scholar 

  39. Xiong G, Yu B, Dong J, Shi Y, Zhao B, He LN. Chem Commun, 2017, 53: 6013–6016

    Article  CAS  Google Scholar 

  40. Sheldrick GM. Acta Cryst, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  41. Sheldrick GM. Acta Crystlogr A Found Adv, 2015, 71: 3–8

    Article  CAS  Google Scholar 

  42. Spek AL. Acta Crystlogr C Struct Chem, 2015, 71: 9–18

    Article  CAS  Google Scholar 

  43. Bernini MC, Romero de Paz J, Snejko N, Sáez-Puche R, Gutierrez- Puebla E, Monge MÁ. Inorg Chem, 2014, 53: 12885–12895

    Article  CAS  PubMed  Google Scholar 

  44. Wang HY, Wu Y, Leong CF, D’Alessandro DM, Zuo JL. Inorg Chem, 2015, 54: 10766–10775

    Article  CAS  PubMed  Google Scholar 

  45. An DL, Chen YQ, Tian Y. Z Anorg Allg Chem, 2014, 640: 1776–1781

    Article  CAS  Google Scholar 

  46. Chen YQ, Li GR, Qu YK, Zhang YH, He KH, Gao Q, Bu XH. Cryst Growth Des, 2013, 13: 901–907

    Article  CAS  Google Scholar 

  47. Fu Z, Chen Y, Zhang J, Liao S. J Mater Chem, 2011, 21: 7895–7897

    Article  CAS  Google Scholar 

  48. TOPOS software is available for download at https://doi.org/www.topos.ssu.samara.ru

  49. Zhang JY, Shi JX, Cui PH, Yao ZJ, Deng W. CrystEngComm, 2017, 19: 5038–5047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21625103, 21571107, 21421001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, XM., Shi, Y., Cao, CS. et al. Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines. Sci. China Chem. 62, 622–628 (2019). https://doi.org/10.1007/s11426-018-9420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9420-6

Keywords

Navigation